

Agilent 1260 Infinity Refractive Index Detector

User Manual

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2010-2013, 2014

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1362-90011 Rev. C

Edition

01/2014

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide...

This manual covers the Agilent 1260 Infinity Refractive Index Detector (G1362A RID).

1 Introduction to the Refractive Index Detector

This chapter gives an introduction to the Refractive Index Detector.

2 Site Requirements and Specifications

This chapter provides information on environmental requirements, physical and performance specifications.

3 Installing the Refractive Index Detector

This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the detector.

4 Using the Refractive Index Detector

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.

5 Optimizing the Refractive Index Detector

This chapter provides information on how to optimize the detector.

6 Troubleshooting and Diagnostics

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

7 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

8 Test Functions

This chapter describes the detector's built in test functions.

9 Maintenance

This chapter provides general information on maintenance of the detector.

10 Parts for Maintenance

This chapter provides information on parts for maintenance.

11 Identifying Cables

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

12 Hardware Information

This chapter describes the module in more detail on hardware and electronics.

13 Appendix

This chapter provides safetey and other general information.

Contents

1 Introduction to the Refractive Index Detector 9

Introduction to the Refractive Index Detector 10 How the Detector Operates 11 Detection Principle 13 Flow Path 16 System Overview 21

2 Site Requirements and Specifications 25

Site Requirements 26 Physical Specifications 29 Performance Specifications 30

3 Installing the Refractive Index Detector **33**

Unpacking the Detector 34 Optimizing the Stack Configuration 37 Installation Information on Leak and Waste Handling 42 Installing the Detector 46 Flow Connections 49

4 Using the Refractive Index Detector 53

Leak and Waste Handling 54 Operation of the Refractive Index Detector 55 Running a Checkout Sample 63 Checking Baseline Noise and Drift 67

5 Optimizing the Refractive Index Detector 75

Refractive Index Detector Optimization 76

Contents

6 Troubleshooting and Diagnostics 81

Overview of the Module's Indicators and Test Functions 82 Status Indicators 84 User Interfaces 86 Agilent Lab Advisor Software 87

7 Error Information 89

What Are Error Messages 91 General Error Messages 92 Refractive Index Detector Specific Error Messages 99 Not-Ready Messages 105

8 Test Functions 107

Refractive Index Calibration 108 Optical Balance 113 Using the Build-in Test Chromatogram 116

9 Maintenance 119

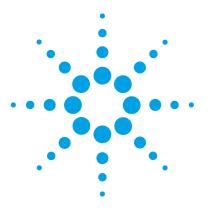
Introduction to Maintenance 120 Warnings and Cautions 121 Detector Maintenance Procedures 122 Cleaning the Module 123 Flow Cell Flushing 124 Correcting Leaks 125 Replacing Leak Handling System Parts 126 Replacing the Detector's Firmware 127 Replacing the Interface Board 128

10 Parts for Maintenance 129

Accessory Kits 130

11 Identifying Cables 133

Cable Overview 134 Analog Cables 136 Remote Cables 138 BCD Cables 141 CAN/LAN Cables 143 **External Contact Cable** 144 Agilent Module to PC 145 Agilent 1200 Module to Printer 146


12 Hardware Information 147

Firmware Description 148 Electrical Connections 151 Interfaces 153 Setting the 8-bit Configuration Switch (without On-Board LAN) 160 Optional Interface Boards 164 Instrument Layout 168 Early Maintenance Feedback 169

13 Appendix 171

General Safety Information 172 The Waste Electrical and Electronic Equipment Directive 175 Lithium Batteries Information 176 Radio Interference 177 Sound Emission 178 Solvent Information 179 Agilent Technologies on Internet 180

Contents

1

Agilent 1260 Infinity RID User Manual

Introduction to the Refractive Index Detector

Introduction to the Refractive Index Detector 10 How the Detector Operates 11 Detection Principle 13 Flow Path 16 System Overview 21 Leak and Waste Handling 21

This chapter gives an introduction to the Refractive Index Detector.

Introduction to the Refractive Index Detector

The detector is designed for highest optical performance, GLP compliance and easy maintenance. It includes the following features:

- advanced temperature controlled detector optics ready to use within two hours of installation
- automatic zero and automatic purge combined with a recycle valve for automatic solvent recycling allow uninterrupted operation
- · durable tungsten lamp with a life expectancy of 40,000 hours
- automatic light intensity control circuit to ensure the optimum performance of the optics
- · integrated diagnostics for efficient troubleshooting
- built-in refractive index calibration
- · front access to valves and capillaries for easy maintenance

For specifications, see "Performance Specifications" on page 30.

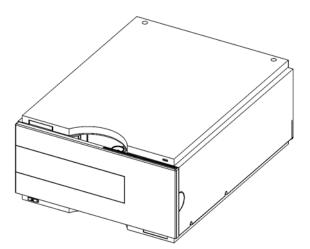


Figure 1 The Agilent 1260 Infinity Refractive Index Detector

How the Detector Operates

Refractive index When a beam of light passes from one medium into another, the wave velocity and direction changes. The change in direction is called refraction. The relationship between the angle of incidence and the angle of refraction is expressed in Snell's Law of refraction.

$$n = \frac{n_2}{n_1} = \frac{\sin \alpha_1}{\sin \alpha_2}$$

Where:

- n = Refractive index of medium 1 relative to medium 2
- n_2 = Refractive index of medium 2
- $n_1 = \text{Refractive index of medium 1}$
- α_1 = angle of incident light in medium 1
- α_2 = angle of refraction in medium 2

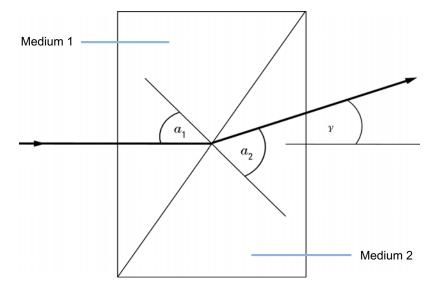


Figure 2 Light Refraction

How the Detector Operates

According to the formula below small angles of external deflection are proportional to the difference between the refractive indices of medium 1 and medium 2.

$$\tan \gamma = \frac{n_1 - n_2}{n_1}$$

Where:

- γ = angle of external deflection
- n_2 = Refractive index of medium 2
- n_1 = Refractive index of medium 1

Factors that Affect Refractive Index

The refractive index of a medium is affected by a number of factors;

1 Wavelength

The refractive index varies with changes in the wavelength of the incident light beam.

2 Density

As the density of the medium changes the refractive index changes. At a fixed wavelength of incident light the changes in refractive index are generally linear in relation to the changes in medium density.

The density of a medium will be affected by the following factors:

- Composition (if not a pure substance)
- Temperature
- Pressure

Detection Principle

Detector Design

The Agilent 1260 Infinity Refractive Index Detector is a differential refractometer that measures the deflection of a light beam due to the difference in refractive index between the liquids in the sample and reference cells of a single flow cell.

A beam of light from the lamp passes through a flow cell which is separated diagonally into sample and reference cells. At the rear of the flow cell a mirror reflects the light back through the flow cell and via a zero glass, which affects the path of the light beam, to the light receiver. The light receiver has two diodes each of which produces an electrical current proportional to the amount of light that falls upon it (see Figure 3 on page 14).

1 Introduction to the Refractive Index Detector

Detection Principle

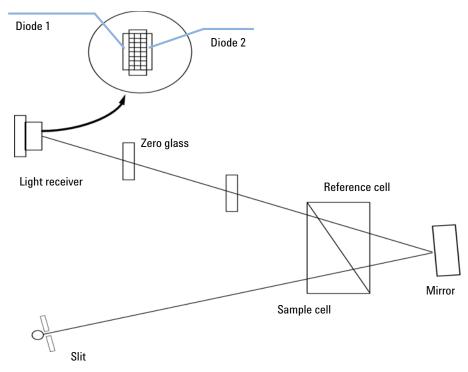


Figure 3 Detection Principle

Measurements

Initially both sample and reference cell are flushed with mobile phase. The reference cell is then closed and solvent flows only through the sample cell. The refractive index of the mobile phase in both cells is the same and the position of the zero glass can be adjusted so that the detector is in optical balance with an equal amount of light falls on each diode.

When sample elutes from the column into the sample cell the refractive index of the cell contents changes. The change in refractive index deflects the light beam as it passes through the flow cell resulting in an unequal amount of light falling on each diode. The change in current from the diodes that this causes is amplified and used to produce the calibrated detector signal. This signal expressed, as nano Refractive Index Units (nRIU), corresponds to the difference between the refractive index of sample in the sample cell and the mobile phase in the reference cell.

Introduction to the Refractive Index Detector 1 Detection Principle

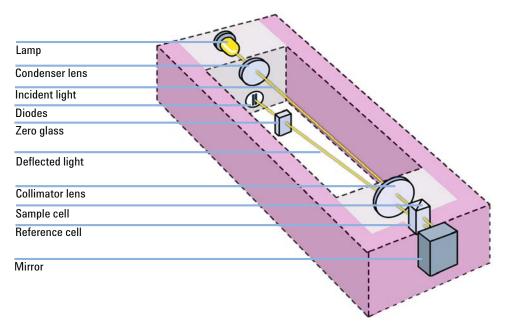


Figure 4 Optical Path

1 Introduction to the Refractive Index Detector Flow Path

Flow Path

The column eluent enters the optical unit through the in port and passes through a heat exchanger. The combination of the heat exchanger and control of the optical unit temperature in the range of 5 °C above ambient to 55 °CC minimizes changes in refractive index due to temperature variations. The eluent flows through the sample cell and via the same heat exchanger to the purge valve. With the purge valve in the OFF position the eluent passes to the recycle valve. If the recycle valve is also in the OFF/WASTE position the eluent will flow via the waste port into the waste container.

If the recycle valve is in the ON/BOTTLE position the eluent will flow via the recycle port back to the solvent bottle. The recycle valve can be manually set to the ON or OFF position or the **Automatic recycling after analysis** mode can be enabled. In this mode the recycle valve will automatically switch to the ON position after each analysis has been completed and return to the OFF position before the next analysis starts. Using this mode provides the benefits of uninterrupted flow through the detector without the problems of excessive solvent usage or the contamination of mobile phase with recycled sample compounds.

If the purge valve is in the *on* position the eluent cannot pass immediately to the recycle valve but will instead flow via a second heat exchanger through the reference cell and then into the recycle valve (see Figure 5 on page 17). Periodically switching the purge valve to the *on* position while only mobile phase is flowing will ensure that the liquid in the reference cell is as similar as possible to the flowing solvent. The purge valve can be manually set to the *on* position for a defined time or the **Automatic purge** mode can be enabled. In this mode the purge valve will automatically switch to the ON position for a defined **purgetime** prior to the start of each analysis. If a **purgetime** is set then a **waittime** must also be set to allow the detector baseline to stabilize after the switching of the purge valve position.

After both the purgetime and waittime have been completed the analysis will start. If the **Automatic zero before analysis** mode is enabled the detector output will be set to zero immediately before the analysis begins.

Introduction to the Refractive Index Detector 1 Flow Path

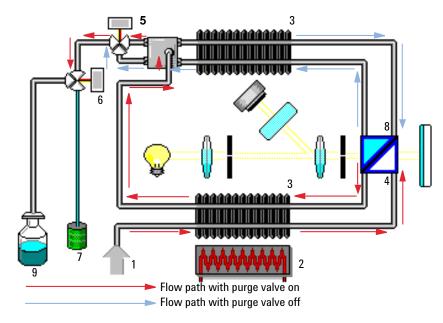
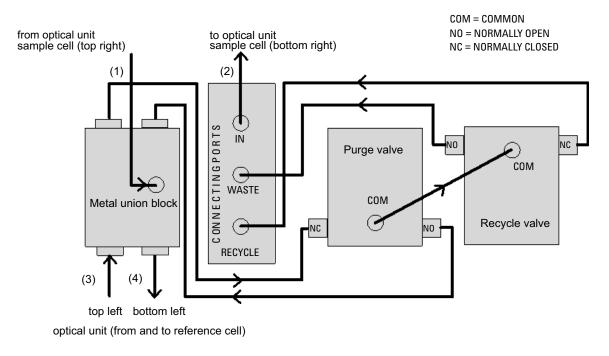



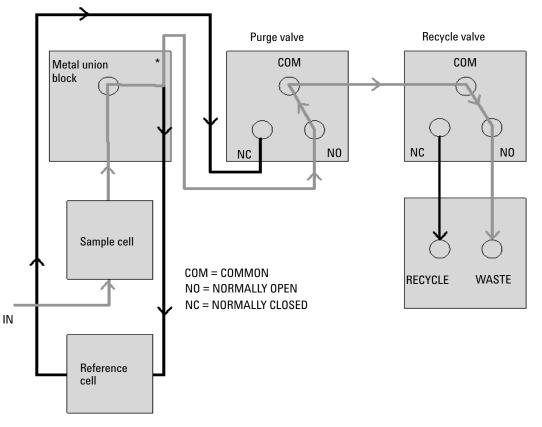
Figure 5 Flow Path

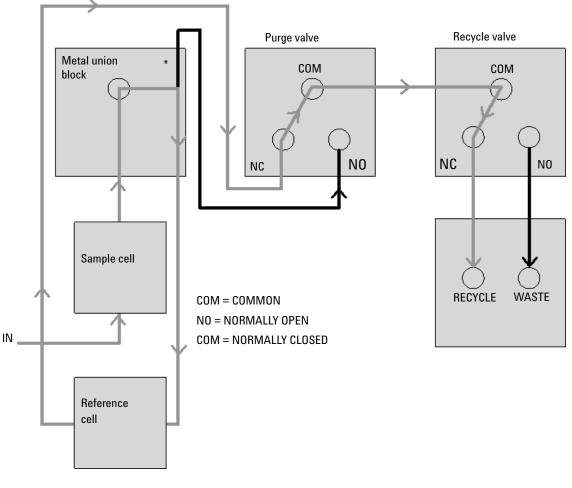
1	Flow in
2	Heater
3	Heat exchanger
4	Sample cell
5	Purge valve
6	Recycle valve
7	Waste container
8	Reference cell
9	Solvent bottle

1 Introduction to the Refractive Index Detector

Flow Path

Capillaries (1) to (4) are part of the optical unit assembly. They are made of SST with an ID of 1.0 mm, except for (2), which has an ID of 0.2 mm. All other tubings (to and from the purge and the reference valve) are made of PTFE (available as Tubing kit (G1362-68709)).




Figure 7 Flow path with the Purge- and Recycle-Valves = OFF

Grey lines = flowing path Black lines = immobilized mobile phase

^{*}The T-connection in the metal union block results in both sides of the flow cell (sample and reference) always being exposed to the same pressure

1 Introduction to the Refractive Index Detector

Flow Path

Grey lines = flowing path Black lines = immobilized mobile phase

^{*}The T-connection in the metal union block results in both sides of the flow cell (sample and reference) always being exposed to the same pressure

System Overview

Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

1 Introduction to the Refractive Index Detector

System Overview

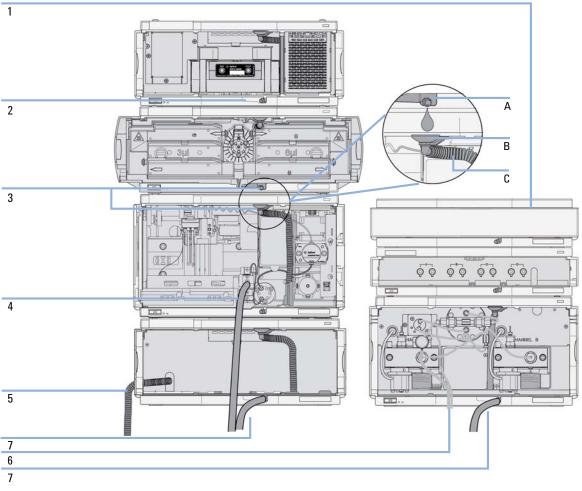


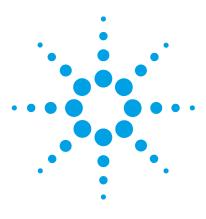
Figure 9 Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.

The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.


The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.

1 Introduction to the Refractive Index Detector

System Overview

Site Requirements and Specifications

Site Requirements26Physical Specifications29Performance Specifications30

2

This chapter provides information on environmental requirements, physical and performance specifications.

2 Site Requirements and Specifications Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Considerations

The module power supply has wide ranging capability. It accepts any line voltage in the range described in Table 1 on page 29. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING Hazard of electrical shock or damage of your instrumentation

can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage only.

WARNING The module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. electrical shock, when the cover is opened and the module is connected to power.

- Always unplug the power cable before opening the cover.
- → Do not connect the power cable to the instrument while the covers are removed.

CAUTION

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- Never operate your instrumentation from a power outlet that has no ground connection.
- Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

Bench Space

The module dimensions and weight (see Table 1 on page 29) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

Environment

Your detector will work within the specifications at ambient temperatures and relative humidity described in Table 1 on page 29.

ASTM drift tests require a temperature change below 2 °C/hour (3.6 °F/hour) over one hour period. Our published drift specification (refer also to "Performance Specifications" on page 30) is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1 °C/hour (1.8 °F/hour). Turbulences around one minute or less can be ignored.

NOTE The module is designed to operate in a typical electromagnetic environment (EN61326-1) where RF transmitters, such as mobile phones, should not be used in close proximity.

CAUTION

Condensation within the module

Condensation will damage the system electronics.

- → Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Туре	Specification	Comments
Weight	17 kg (38 lbs)	
Dimensions (height × width × depth)	180 x 345 × 435 mm (7 x 13.5 × 17 inches)	
Line voltage	100 - 240 VAC, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	160 VA / 65 W / 222 BTU	Maximum
Ambient operating temperature	0–55 °C (32–131 °F)	
Ambient non-operating temperature	-40 – 70 °C (-40 – 158 °F)	
Humidity	< 95 % r.h. at 40 °C (104 °F)	Non-condensing
Operating altitude	Up to 2000 m (6562 ft)	
Non-operating altitude	Up to 4600 m (15091 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.

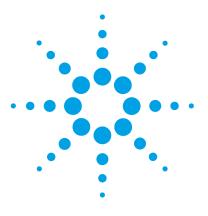
Table 1 Physical Specifications

Performance Specifications

Туре	Specification	Comments
Detection type	Refractive Index	
Refractive index range	1.00 - 1.75 RIU, calibrated	
Measurement range	+/- 600 x 10 ⁻⁶ RIU	
Optical zeroing		via set screw
Optics temperature control	5 °C above ambient to 55 °C	
Sample cell	volume 8 μL maximum pressure 5 bar (0.5 Mpa) maximum flow rate 5 mL/min	
Valves	Automatic purge and automatic solvent recycle	
Volumes	Inlet port to sample cell 62 μL, inlet port to outlet port 590 μL	
Liquid contact materials	316 stainless steel, PTFE and quartz glass	
pH range	2.3 - 9.5	
Performance specifications	Short term noise < +/- 2.5 x 10 ⁻⁹ RIU Drift < 200 x 10 ⁻⁹ RIU/h	see note below this table
Time programmable parameters	polarity, peak width	
Maximum data rate	37 Hz	
Detector zero	automatic zero before analysis	
Control and data evaluation	Parameter entry, signal display, on-line help and diagnostics with the Agilent 1260 Infinity Control Module. Optional PCMCIA card for method, sequence and logbook storage and transfer. Agilent ChemStation for LC PC based software for control and data evaluation.	

Table 2 Performance Specifications Agilent 1260 Infinity Refractive Index Detector

Туре	Specification	Comments
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range selectable, one output	
Communications	Controller-area network (CAN), LAN, RS-232C, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive diagnostics, error detection and display (through control module and ChemStation), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage with user-selectable limits and feedback messages. Electronic records of maintenance and errors. Automated operational qualification/performance verification (OQ/PV).	
Housing	All materials recyclable.	
Environment	0 to 55 °C constant temperature at < 95% humidity (non-condensing)	
Dimensions	180 mm x 345 mm x 435 mm (7 x 13.5 x 17 inches) (height x width x depth)	
Weight	17 kg (38 lbs)	


Table 2	Performance S	pecifications Agilent	1260 Infinity	Refractive I	ndex Detector

NOTE

Based on ASTM method E-1303-95 Practice for Refractive Index Detectors used in Liquid Chromatography. Reference conditions; optics temperature 35 °C, response time 4 s, flow 1.0 mL/min LC-grade Water, restriction capillary, column compartment temperature 35 °C, Agilent on-line degasser G1322A, pump and thermostatted column compartment. Instrument equilibrated for 2 hours.

2 Site Requirements and Specifications

Performance Specifications

3

Installing the Refractive Index Detector

Unpacking the Detector 34 Delivery Checklist 34 Optimizing the Stack Configuration 37 Optimizing the One Stack Configuration 38 Optimizing the Two Stack Configuration 40 Installation Information on Leak and Waste Handling 42 Installing the Detector 46 Flow Connections 49

This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the detector.

3 Installing the Refractive Index Detector Unpacking the Detector

Unpacking the Detector

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Delivery Checklist

Ensure all parts and materials have been delivered with your module. The delivery checklist is shown below. For parts identification please check the illustrated parts breakdown in "Parts for Maintenance" on page 129. Please report any missing or damaged parts to your local Agilent Technologies sales and service office.

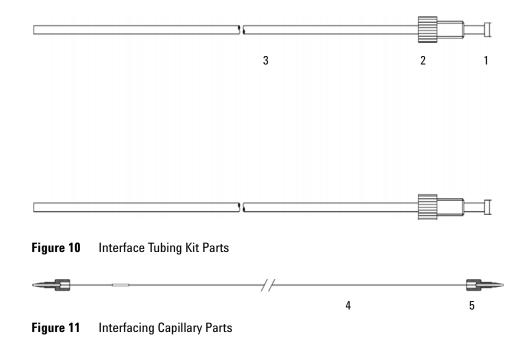
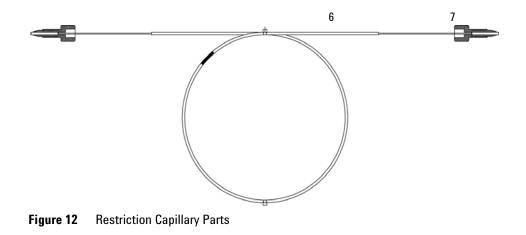

Description	Quantity
Detector	1
Power cable	1
<i>User Manual</i> on Documentation CD (part of the shipment - not module specific)	1 per order
Accessory kit (G1362-68755)	1

Table 3 Delivery Checklist 1260 RID

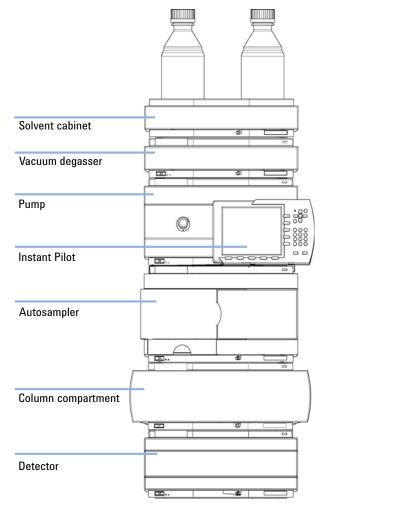
Accessory Kit


Accessory kit (G1362-68755) contains some accessories needed for the installation of the detector.

p/n	Description
G1362-68706	Interface tubing kit
G1362-87300	Interfacing capillary
G1362-87301	Restriction capillary
5181-1516	CAN cable, Agilent module to module, 0.5 m
0100-1847	PEEK adapter 1/4-28 to 10-32 (Adapter AIV to solvent inlet tubes)

3 Installing the Refractive Index Detector

Unpacking the Detector



Optimizing the Stack Configuration

If your module is part of a complete Agilent Liquid Chromatograph, you can ensure optimum performance by installing the following configurations. These configurations optimize the system flow path, ensuring minimum delay volume.

Optimizing the One Stack Configuration

Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC System in the following configuration (See Figure 13 on page 38 and Figure 14 on page 39). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

Optimizing the Stack Configuration

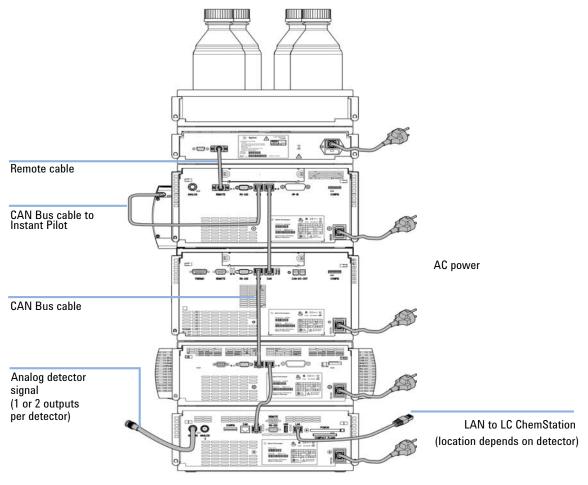
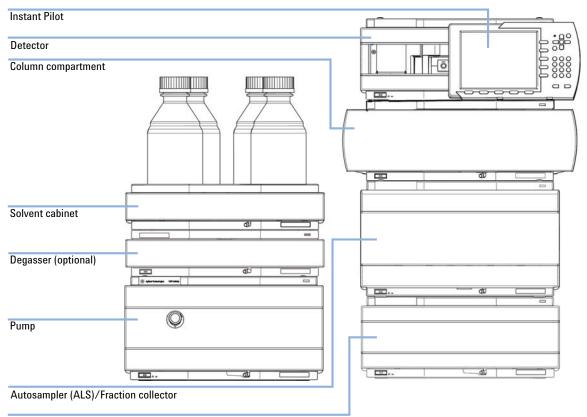
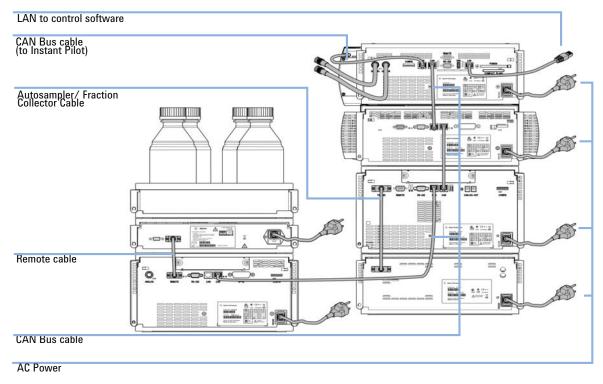



Figure 14 Recommended Stack Configuration for 1260 Infinity (Rear View)


Optimizing the Two Stack Configuration

To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 15 on page 40 and Figure 16 on page 41).

Thermostat for the ALS/Fraction collector (optional)

Installation Information on Leak and Waste Handling

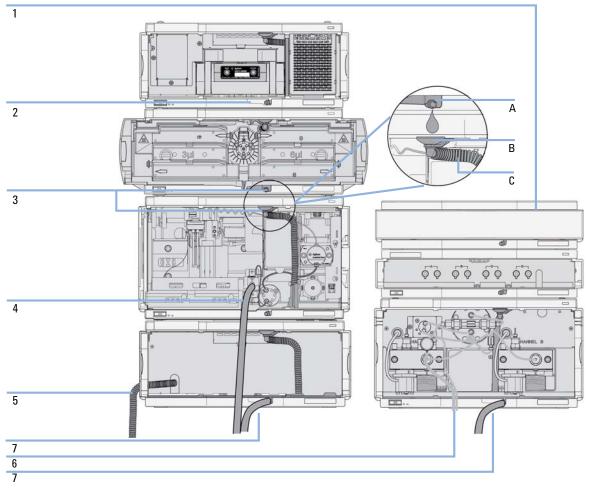
Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.


- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

Installation Information on Leak and Waste Handling

Figure 17 Leak and waste handling (overview - typical stack configuration as an example)

Installation Information on Leak and Waste Handling

1	Solvent cabinet
2	Leak pan
3	Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C)
4	Waste tube of the sampler's needle wash
5	Condense drain outlet of the autosampler cooler
6	Waste tube of the purge valve
7	Waste tube

1 Stack the modules according to the adequate stack configuration.

The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 17 on page 43.

- **2** Connect data and power cables to the modules, see section *Installing the Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- → Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- Avoid loops.
- → Tubes must not sag.
- → Do not bend tubes.
- → Do not immerse tube end in waste liquid.
- → Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.

WARNING

Installation Information on Leak and Waste Handling



Figure 18 Warning label (illustration for correct waste tubing)

3 Installing the Refractive Index Detector Installing the Detector

Installing the Detector

Parts required	Description		
	Power cord		
	For other cables see "Cable Overview" on page 134		
Hardware required	Agilent 1260 Infinity Refractive Index Detector (G1362A)		
Preparations	 Locate bench space Provide power connections Unpack the detector 		
NOTE	The detector is turned on when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned off when the line power switch is protruding and the green light is OFF.		
WARNING	Module is partially energized when switched off, as long as the power cord is plugged in.		
	Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.		
	→ Make sure that it is always possible to access the power plug.		
	→ Remove the power cable from the instrument before opening the cover.		
	\rightarrow Do not connect the power cable to the Instrument while the covers are removed.		

NOTE

The detector was shipped with default configuration settings. To change these settings see "Setting the 8-bit Configuration Switch (without On-Board LAN)" on page 160.

- **1** Install the LAN interface board in the detector (if required), see "Replacing the Interface Board" on page 128.
- 2 Place the detector in the stack or on the bench in a horizontal position.
- **3** Ensure the line power switch at the front of the detector is OFF.

Status indicator green/yellow/red		
Line power switch with green light		547273
-	D)	G1362A Bendi • DE12345678

Figure 19 Front View of Detector

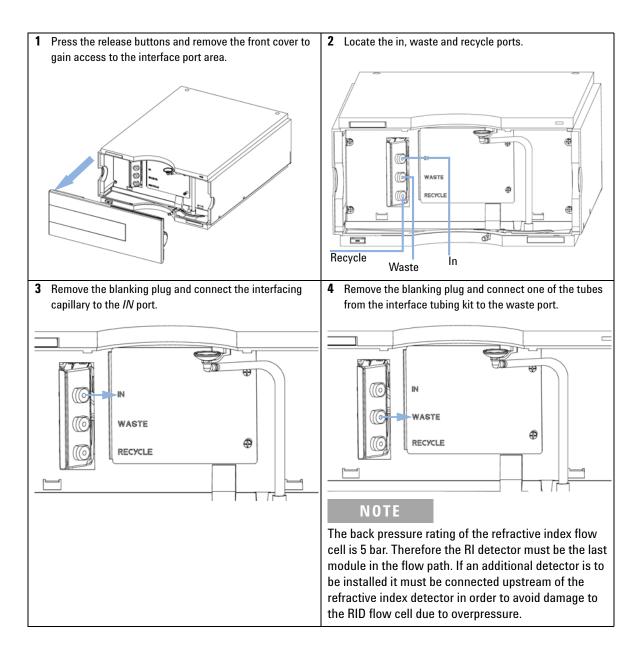
- **4** Connect the power cable to the power connector at the rear of the detector.
- **5** Connect the CAN cable to other Agilent modules.
- **6** If an Agilent ChemStation is the controller, connect the LAN connection to the LAN interface board in the detector.
- 7 Connect the analog cable (optional) for a chart recorder, integrator or other data collection device.
- 8 Connect the APG remote cable (optional) for non-Agilent modules.

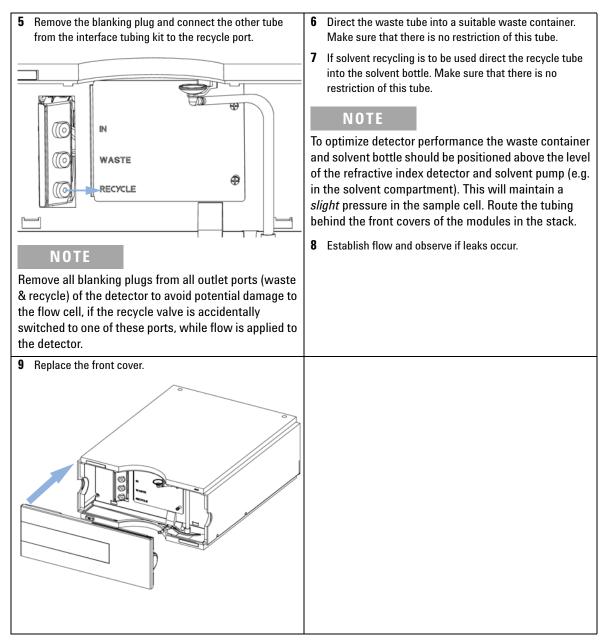
Installing the Detector

- CAN O) RS 232 APG remote J.. 06 O Analog signal Configuration Ð 0 01107 DE12345878 n Power Security lever
- **9** Turn ON power by pushing the button at the lower left hand side of the detector. The status LED should be green.

Figure 20 Rear View of Detector

The GPIB interface has been removed with the introduction of the Agilent 1260 Infinity modules


Flow Connections


Tools required		ription ch wrench	
Parts required	# 1 1	p∕n G1362-68706 G1362-87300	Description Interface tubing kit Interfacing capillary
Hardware required		r modules	
Preparations	• D	etector is installed i	n the LC system.
WARNING	Toxic, flammable and hazardous solvents, samples and reagents The handling of solvents, samples and reagents can hold health and safety risks.		
	When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.		
	The volume of substances should be reduced to the minimum required for the analysis.		stances should be reduced to the minimum required for the
	ightarrow Do not operate the instrument in an explosive atmosphere.		
	The flow cell is shipped with a filling of isopropanol (also recommended when the		

NOTE

The flow cell is shipped with a filling of isopropanol (also recommended when the instrument and/or flow cell is shipped to another location). This is to avoid breakage due to subambient conditions.

Flow Connections

The installation of the detector is now complete.

Flow Connections

4

Using the Refractive Index Detector

Leak and Waste Handling 54 Operation of the Refractive Index Detector 55 Before Using the System 55 Refractive Index Detector Control 57 Refractive Index Detector Settings 59 Refractive Index Detector More Settings 61 Running a Checkout Sample 63 Checking Baseline Noise and Drift 67 Setting the Test Conditions 67 Evaluation 73

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.

4 Using the Refractive Index Detector Leak and Waste Handling

Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see "Installation Information on Leak and Waste Handling" on page 42.

Operation of the Refractive Index Detector

This chapter can be used for

- preparing the system,
- · to learn the set up of an HPLC analysis and
- to use it as an instrument check to demonstrate that all modules of the system are correctly installed and connected. It is not a test of the instrument performance.
- Learn about special settings

Before Using the System

Solvent Information

Consult the manual of your pump about suitable solvents.

Priming and Purging the System

When the solvents have been exchanged or the pumping system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel between the solvent reservoir, vacuum degasser (when available in the system) and the pump. Solvents containing volatile ingredients will slightly lose these. Therefore priming of the pumping system is required before starting an application.

Operation of the Refractive Index Detector

Table 4 Cho	pice of Priming Solvents for Different Purp	oses
-------------	---	------

Activity	Solvent	Comments
After an installation	Isopropanol	Best solvent to flush air out of the system
When switching between reverse phase and normal phase (both times)	Isopropanol	Best solvent to flush air out of the system
After an installation	Ethanol or Methanol	Alternative to Isopropanol (second choice)if no Isopropanol is available
To clean the system when using buffers	Bidistilled water	Best solvent to re-dissolve buffer crystals
After a solvent change	Bidistilled water	Best solvent to re-dissolve buffer crystals
After the installation of normal phase seals (P/N 0905-1420)	Hexane + 5 % Isopropanol	Good wetting properties

- 1 Open the purge valve of your pump (by turning it counterclockwise) and set flow rate to 3 5 ml/min.
- 2 Flush all tubes with at least 30 ml of solvent.
- **3** Set flow to required value of your application and close the purge valve.

Pump for approximately 30 minutes before starting your application (for some solvents an even longer flush and equilibration time might be needed).

Refractive Index Detector Control

The following operating instructions were generated using the Agilent B.01.03 ChemStation as operating software.

How To Get There:

The RID Control dialog box is displayed when you select **More RID**... from the Instrument menu (**More RID**... is available in **Full Menus** only) and select **Control**... from the **More RID**... submenu.

RID Control : Instrument 1			
Heater	Error Method		
⊙on Coff	Take current method		
Recycling Valve	Analog Output <u>R</u> ange		
O on ⊙ off	⊙ 0.1V C 1V		
- Purge Reference <u>C</u> ell-	At Power On		
⊙ on C off	_		
for 20.0	Turn heater on		
Automatic Turn On			
Turn heater on at:			
Date: 10/18/2005 <m d="" yyyy=""></m>			
Time: 14:23:41 <hhr.mm:ss></hhr.mm:ss>			
	Cancel <u>H</u> elp		

Figure 21 Refractive Index Detector Control

- **Heater**: Select the **on** option to switch the RID heater on. This parameter requires to set the Optical Unit Temperature. Select the **off** option to switch the optical unit heater off.
- **Error Method**: The **Error Method** group enables you to select the method that is run when an error occurs. It ensures that the instrument shuts down in a controlled manner if the ChemStation control is discontinued for any reason. When **Take current method** is checked the current method is copied to the module and stored; if an error occurs, the module will run the stored method.
- **Recycling Valve**: Select the **on** option to switch the recycling of the eluent on. The **off** option diverts the flow of the RID to the waste bottle.

Operation of the Refractive Index Detector

- Analog Output Range: The Analog Output Range group allows you to select the voltage ranges of the analog output of the refractive index detector. Select 0.1 V to set the full-scale output to 0.1 volts. Select 1 V to set the full-scale output to 1 volt.
- **Purge Reference Cell**: This parameter is used to exchange the content of the reference cell in the case of solvent change or reference cell contamination. Enter a time interval (minutes) to purge the reference cell of the Agilent 1260 Infinity RID. This will be started immediately if you click **OK** on this window. Allow additional time for baseline stabilization after purging.
- At Power On: When activated, the optical unit heater is turned on automatically when the RID is switched on. For shortest equilibration times, Agilent recommends to leave this function always on.
- Automatic Turn On: This function allows you to turn on the optical unit heater at a specified date and time. It requires that the At Power On function is turned off. Select Turn Heater on at: to activate the date and time fields, and enter the date and time in the appropriate fields in the specified format.

Refractive Index Detector Settings

The following operating instructions were generated using the Agilent B.01.03 ChemStation as operating software.

How To Get There:

The Agilent 1260 Infinity RID Signal dialog box is displayed when you select **Setup RID Signal** from the **Instrument menu**.

RID Signal : Instrument 1	×
Optical Unit Temperature 350 € *C Polarity © positive © negative Automatic recycling after analysis © on © off	Time <u>S</u> toptime: as Pump ★ min 20.00 ★ min Posttime: Off ★ min Peakwidth (Responsetime) > 0.2 min (4 s, standarc ▼
 Line Time Polarity	Peakwidth Insert Append Cut Copy Easte
<u>O</u> K Cancel <u>H</u> e	elp <u>M</u> ore >>

Figure 22 Refractive Index Detector Settings

- **Optical Unit Temperature**: This item sets the temperature of the optical unit. The optical unit of the Agilent 1260 Infinity RID can be operated between 5 °C above ambient and 55 °C. The recommended setting is 5 °C above ambient. This will improve baseline stability.
- **Polarity**: This item sets the polarity of the RID signal. Because of the nature of analytes and eluents refractive index detectors can show negative and positive peaks, even within a run. Select the Signal Polarity you expect from your data from **Negative** or **Positive**.

Operation of the Refractive Index Detector

- Automatic Recycling: This parameter can be used to select between automatic recycling of the eluent (on) or directing the eluent to the waste outlet of the RID (off) after the run.
- Time:

Stoptime

Stoptime enables you to set a time at which the RID stops an analysis. If the RID is used with other Agilent 1200 Infinity Series modules, the RID **stoptime** stops the RID only and does not stop any other modules. Limits: 0.00 to 99999.00 minutes, **asPump** (the stoptime of the pump when an Agilent pump is configured), **aslnj** (the stoptime of the injector if an Agilent 1200 Infinity Series injector but no Agilent pump is configured) or **noLimit** (an infinite run time). The stoptime setting depends on the configured pump. If you have an Agilent pump with an Agilent injector, then the pump is the stoptime master (**asPump**). If you have a non-Agilent pump and an Agilent 1200 Infinity Series injector then the injector is the stoptime master (**aslnj**).

Posttime

You can set the **Posttime** so that your RID remains in the not ready state during the **Posttime** to delay the start of the next analysis. A **Posttime** period can be used to allow your column to equilibrate after changes in solvent composition. Limits: 0 to 99999.00 minutes or **Off. Off** sets the posttime to 0.0 min.

• **Peakwidth**: **Peakwidth** enables you to select the peak width (response time) for your analysis. The peak width is defined as the width of a peak, in minutes, at half the peak height. Set the peak width to the narrowest expected peak in your chromatogram. The peak width sets the optimum response time for your RID. Limits: When you set the peak width (in minutes), the corresponding response time is set automatically and the appropriate data rate for signal acquisition is selected (please refer to the ChemStation's Online help for more details).

Refractive Index Detector More Settings

The following operating instructions were generated using the Agilent B.01.03 ChemStation as operating software.

How To Get There:

The RID Signal dialog box is displayed when you select **Setup RID signal** from the **Instrument** menu. The **More** button displays additional Menus.

RID Signal : Instrument 1				
☐ <u>O</u> ptical Unit Temperature 40.0	Time Stoptime: as Pump 의 min 20.00 외 min <u>Posttime:</u> Off 한 min	Analog Output Zero Offset: 5 % Attenyation: 500 * 10^3 r nRIU		
Automatic recycling after analysis C on O off Iimetable: Line Time Polarity	Peakwidth (Responsetime) > 0.2 min (4 s, standarc Peakwidth Insert Append Cut Copy Reste	Store additionally Diode 1 Signal Diode 2 Signal Optical Unit I emperature Polarity Balance Signal Automatic zero before analysis O on O off		
<u>D</u> K Cancel <u>H</u> el	<u>More >></u>	Automatic purge purgetime 0.00 min waittime 0.00 min		

Figure 23 More RID Settings

- Analog Output: If the Analog Output is used a zero offset (limits between 1 and 99 %) can be selected to enable the display of negative peaks. The attenuation settings helps to keep all peaks on scale. Choose the appropriate setting from the list.
- **Store Additionally**: Here you can choose to store additional signal that may help during method development and diagnosis with the RID. The following parameters can be selected:

Operation of the Refractive Index Detector

Diode 1 signal

The RID signal is based on the ratio of the light level that is measured by two photodiodes. The RID signal is zero if the two diodes show the same light level. This parameter allows you to store individually the signal measured by the diode 1.

Diode 2 signal

The RID signal is based on the ratio of the light level that is measured by two photodiodes. The RID signal is zero if the two diodes show the same light level. This parameter allows you to store individually the signal measured by the diode 2.

Optical unit temperature

This parameter activates the storage of the optical unit temperature signal.

Polarity

This parameter activates the storage of polarity switching during the run.

Balance signal

This parameter activates storage of the diode balance signal during a run. This helps to diagnose peaks that exceed the dynamic range of the RID, for example in the case of extremely high concentrations/signals.

- Automatic Zero: This setting allows you to activate an automatic zeroing of the signal before the run is started. If automatic purge is selected, the purge will be performed before the automatic zero.
- **Automatic Purge**: This parameter can be used to do a purge of the reference cell and wait additional time for baseline stabilization. It will be initiated each time when the run is started. This should only be used if the content of the reference cell is expected to degrade during a run. The automatic purge will be finished before the autozero is performed and before the injection is done.

Running a Checkout Sample

This chapter describes the check out of the Agilent 1260 Infinity Refractive Index Detector using the Agilent isocratic checkout sample.

When	If you want to checkout the detector		
Parts required	#	p/n	Description
	1	993967-902	Zorbax Eclipse XDB-C18, 4.6 x 150 mm, 5 µm
	1	01080-68704	Agilent isocratic checkout sample This 0.5 mL ampoule contains 0.15 wt.% dimethylphthalate, 0.15 wt.% diethylphthalate, 0.01 wt.% biphenyl, 0.03 wt.% o-terphenyl in methanol.

1 Turn the detector on.

You are now ready to change the settings of your detector.

2 Set up the instrument with the following chromatographic conditions.

Table 5Chromatographic Conditions

Mobile phases	30% Water, 70% Acetonitrile
Column	Zorbax Eclipse XDB C18, 150 mm x 4.6 mm i.d.
Sample	Isocratic standard sample
Flow rate	1.5 ml/min
Stroke A	20 µl
Stop time	10 min
Injection volume	20 µl
Column compartment temperature	25 °C
Optical unit Temperature	35 °C
Polarity	Positive
Peak Width (Response time)	0.2 min (4 s, standard)

Running a Checkout Sample

RID Signal : Instrument 2	×
Optical Unit Temperature	Time
Polarity ● pogitive ○ <u>n</u> egative	Stoptime: 20.00 承 min Posttime: Off ★ min
Automatic recycling after analysis	Peak <u>w</u> idth (Responsetime)
Oo <u>n</u> ●o <u>f</u> f	> 0.2 min (4 s, standard) 💌
-Timetable:	Insert Append Cut Copy Paste
<u>O</u> K Cancel	Help More >>

3 Set the RID setpoints according to Figure 24 on page 64.

Figure 24 RID Check Out Sample Parameters

4 Turn the heater **ON** and purge the detector reference cell for 20 minutes as shown in Figure 25 on page 65:

RID Control : Instrument 2	×		
<u>H</u> eater	Error Method		
⊖on ©off	Take current method		
Recycling <u>V</u> alve	Analog Output <u>R</u> ange		
⊖on ©off	• 0.1 V O 1 V		
Purge Reference <u>C</u> ell	At <u>P</u> ower On		
● on C off for 20.00	Turn heater on		
Automatic Turn On			
Turn heater on at:			
Date: 3/31/03	<m d="" yy=""></m>		
Time: 14:11:39	<hh:mm:ss></hh:mm:ss>		
<u></u> K	Cancel <u>H</u> elp		

Figure 25 RID Check Out Sample Control

Running a Checkout Sample

5 When purging has finished allow the baseline to stabilize and start the analysis.

The resulting chromatogram is shown in the figure below:

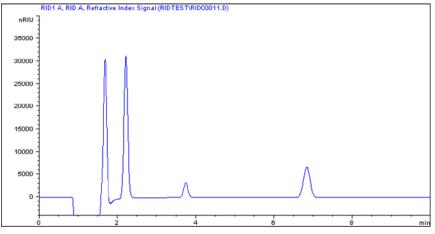


Figure 26 Isocratic Standard Sample Chromatogram

NOTE

The resulting chromatogram should only be seen as a qualitative example, the checkout procedure is not meant as a quantitative procedure. Its intent is only to verify the presence of the four peaks from the checkout sample - nothing more.

Please be aware of the large negative air / solvent peak from the injection (cut out from the bottom of the following figure) prior to the first peak of interest. This is to be expected in a regular chromatogram, especially if a non-degassed sample is injected into degassed solvent and the sample solvent properties don't perfectly match with the mobile phase properties. Only similar zooming factors in the display of a chromatogram will lead to similar looking results.

Checking Baseline Noise and Drift

Setting the Test Conditions

This chapter describes checking the baseline noise and drift for the Agilent 1260 Infinity Refractive Index Detector.

When	If you want to checkout the detector		
Tools required	Description LC system with G1362A RID		
Parts required	2 Connect the restri compartment heat	Description Restriction capillary etor. y to change the settings of your detector. ction capillary directly between the column exchanger outlet and the in port of the detector. nent with the following test conditions.	

Table 6Chromatographic Conditions

Mobile phases	LC grade water
Column	Restriction capillary 2.7 m x 0.17 mm i.d.
Flow rate	1.0 ml/min
Compressibility	46
Stroke	20 µl
Stop time	20 min
Column compartment temperature	40 °C
Optical unit Temperature	40 °C
Polarity	Positive
Peak Width (Response time)	0.2 min (4 s, standard)

Checking Baseline Noise and Drift

4 Set the RID setpoints according to Figure 27 on page 68.

NOTE

The optical unit temperature must be set at least 5 °C above ambient conditions. Therefore if ambient temperature is above 30 °C higher values for Optical unit Temperature and Column compartment temperature must be set.

RID Signal : Instrument 2	
Optical Unit Temperature	Time
40.0 ▼ *C	<u>S</u> toptime: 20.00 ▲ min
Polarity	
● po <u>s</u> itive O <u>n</u> egative	<u>P</u> osttime: Off <mark>∳</mark> min
Automatic recycling	Peakwidth (Responsetime)
after analysis	
Co <u>n</u> ●off	> 0.2 min (4 s, standard) 💌
Timetable:	
Line Time Polarity	Peakwidth <u>I</u> nsert
	Append
	Cut
	<u>С</u> ору
	Paste
<u>OK</u> Cancel	Help More >>

Figure 27 RID Baseline Check Parameters

NOTE

The Agilent ChemStation can automatically calculate the baseline short term noise, long term noise (wander) and drift. Follow steps 4 to 9.

NOTE If you are not using the Agilent ChemStation go to step 10.

5 Edit the Agilent ChemStation method.

Specify Report: Instrument	9			
Destination	<u> </u>		-Quantitative P	
	creen		Calculate:	Percent -
⊠ <u>F</u> ile	File Type	WMF	Based On:	Area 🔹
File Prefix	□. <u>D</u> IF □.	_	Sorted By:	Signal 💌
NOIS2	□. <u>×</u> ls □.	<u>н</u> тм	Signal <u>O</u> ptic	ons
Style				
Report Style: Perform	nance+Noise	•		
Sample info on each page Add Chromatogram Output Add Summed Peaks Table Report Layout For Uncalibrated Peaks Separately With Calibrated Peaks O Do Not Report				
Chromatogram Output-		<u> </u>		
Portrait		Size		Page
O <u>L</u> andscape			75	
○ <u>M</u> ulti-Page (Landscape)		D	Time: ⁷⁵ esponse: 30	
1 🖛 Pa	iges		esponse. Jo	
	OK Ca	ancel	Help	

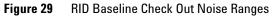

6 Specify the report style Performance + Noise as shown in Figure 28 on page 69

Figure 28RID Baseline Check Out Report

Checking Baseline Noise and Drift

7 Set the noise determination time range to 0 - 20 minutes as shown in Figure 29 on page 70:

Noise Determination: Instrument 2				×
Time ranges for noise determination:				
from:	0	to:	20	min.
from:		to:		min.
from:		to:		min.
from:		to:		min.
from:		to:		min.
from:		to:		min.
from:		to:		min.
Ok Cancel				el

8 Save the Agilent ChemStation method.

9 Turn the heater **ON** and purge the detector reference cell for 20 minutes as shown in Figure 30 on page 71:

RID Control : Instrument 2	×
<u>H</u> eater	Error Method
● on ○ off	Take current method
Recycling <u>V</u> alve	Analog Output <u>R</u> ange
⊖on ©off	• 0.1 V O 1 V
Purge Reference <u>C</u> ell	At <u>P</u> ower On
Oon ●off	Turn heater on
Automatic Turn On	
Turn heater on at:	
Date: 3/31/03	<m d="" yy=""></m>
Time: 10:21:02	<hh:mm:ss></hh:mm:ss>
<u></u> K	Cancel <u>H</u> elp

Figure 30 RID Baseline Check Control

10 When purging has finished allow the baseline to stabilize and start the sequence (blank run - no injection).

Checking Baseline Noise and Drift

		in report is shown in right of on p	uge 12.		
🗉 OQNOIS2.txt - Notep	bad				
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>H</u> e	elp				
	: 3/31/03 2:16:28 PM	Seq. Line : 1			
Sample Name	: NOIS/1	Location : -			
Acq. Operator	:	Inj : 1			
Sequence File	: D:\HPCHEM\2\SEQUENCE\0	QPU\OQNOIS2.S			
Method	r : Inj : 1 e : D:\HPCHEM\2\SEQUENCE\0QPU\0QN0IS2.S : D:\HPCHEM\2\METHODS\0QPU\0QN0IS2.M : 8/21/01 10:36:51 AM				
Last changed	: 8/21/01 10:36:51 AM	. Townswelsens statility.			
UU/PU RID NOISE	, wander, drift and Colum	n Temperature stability			
0roa	Percent Report with Perf	ormance and Noise			
Multiplier	: 1.0000				
Dilution	: 1.0000				
		_			
	A, Refractive Index Signa				
Results obtaine	ed with enhanced integrat	ort			
Noise determinat	tion				
Noise decermina					
Time rance	Noise Noise No	ise			
from I to	(6×SD) (PtoP) (A	STM) Wander Drift			
[min] [min]	[nRIU] [nRIU] [nR	IU] [nRIU] [nRIU/h]			
0.000 20.000	14.5484 12.6403 3	.2124 7.8886 19.639			
	*** End of Rep	ort ***			
•					

11 The Agilent ChemStation report is shown in Figure 31 on page 72:

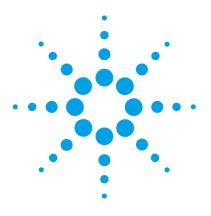
Figure 31Baseline Check Out Results

Evaluation

For the Instant Pilot *Rescale* the plot and measure the baseline noise and drift on the screen. If a printer is configured for the instrument the plot can be printed by pressing the \mathbf{m} key and selecting **Print Plot**.

The following values are calculated automatically by the Agilent ChemStation.

- Noise (ASTM): The short term noise in nRIU based on ASTM method E-1303-95 Practice for Refractive Index Detectors used in Liquid Chromatography using 0.5 minute segments.
- *Wander*: The long term noise in nRIU based on ASTM method E-1303-95 *Practice for Refractive Index Detectors used in Liquid Chromatography* using 0.5 minute segments.
- Drift: The drift in nRIU/hour based on ASTM method E-1303-95 Practice for Refractive Index Detectors used in Liquid Chromatography measured over 20 minutes.


Factors that will affect the baseline stability include:

- · Variations in the optics or eluent temperature
- Pressure fluctuations in the sample cell
- The quality of the water used
- Air bubbles in the flow cell

See "Refractive Index Detector Control" on page 57.

4 Using the Refractive Index Detector

Checking Baseline Noise and Drift

Agilent 1260 Infinity RID User Manual

5 Optimizing the Refractive Index Detector

Refractive Index Detector Optimization 76 Potential Causes for Baseline Problems 78 Detector Equilibration 79

This chapter provides information on how to optimize the detector.

Refractive Index Detector Optimization

Follow these thirteen points to optimize the performance of your refractive index detector.

1 Position the solvent and waste reservoirs correctly

Position the solvent and waste reservoirs above the level of the refractive index detector and solvent pump. This maintains a slight pressure in the sample cell and will improve the performance of the detector.

2 Do not overpressurize the flow cell

Be aware to not exceed a 5 bar pressure drop after the flow cell when hooking up additional devices like other detectors or a fraction collector. If an additional detector is installed place upstream in the flow path it before the G1362A refractive index detector.

3 Use the correct solvents

To minimize baseline noise and drift solvents must be LC grade and filtered prior to use.

4 Check for leaks

Leaks within the LC instrument that the refractive index detector is connected to will cause problems with baseline long term noise or drift. Confirm that the instrument is free from leaks by performing the diagnostic pressure test (for the high pressure parts of the system between pump and column). Ensure that the connections from the on-line vacuum degasser to the pump and the detector inlet, waste and recycle connections are air tight.

5 Verify frit, filter and fitting quality

Partially blocked frits, filters and fittings can cause baseline long term noise. Verify that the pressure drop across all such parts is within expected limits.

6 Control the optical unit temperature

Always control the optical unit temperature (heater = ON) for maximum detector sensitivity or with samples that could precipitate in the sample cell at room temperature and set an elevated optical unit temperature at least 5 °C above ambient conditions.

7 Use an appropriate response time

For most applications a setting of 4 seconds is adequate. Only for high speed analyses (short columns at high flow rates) a lower setting is recommended. Bear in mind that even if the response time setting is too high fast peaks will appear a little smaller and broader but retention time and peak areas are still correct and reproducible.

8 Recycle mobile phase

Use the recycle valve to allow automatic recycling of mobile phase delivered when no analysis is running. The pump flow can therefore continue uninterrupted until the next analysis without wasting mobile phase solvents. In addition the refractive index detector is always stabilized and ready for immediate use.

9 Consider using a degasser

For many solvents you can achieve better baseline stability, when using a degasser. For some solvents a degasser might not lead to a better baseline quality.

10 Flush the degasser

If flow is stopped and mobile phase remains inside the on-line vacuum degasser the solvent composition will change. When re-starting the flow or when using new mobile phase flush each degasser channel used for 10 minutes at the maximum flow rate of the pump (with the purge valve of the pump open to avoid a potential over-pressure in the RI detector's flow cell).

11 Use pre-mixed solvents, only

Don't use a pump for mixing solvents. When operating the RI detector together with a quaternary pump, bypass the MCGV in the quaternary pump. You have to virtually convert the quaternary pump into an isocratic one, by directly connecting the solvent inlet tubing from degasser or solvent bottle to the active inlet valve of the pump (use PEEK adapter 1/4-28 to 10-32 (0100-1847), which is delivered with the accessory kit of the detector).

12 Consider solvent changes with time

Baseline drift can be caused by the tendency of certain solvents to change over time. For example the acetonitrile content of acetonitrile/water mixtures will decrease, tetrahydrofuran will form peroxides, the amount of water in hygroscopic organic solvents will increase and solvents such as tetrahydrofuran held in the reference cell may begin to regas. **13** Eliminate mobile phase/column combination problems

Certain mobile phases in combination with specific columns can generate long term baseline noise. For example acetonitrile/water mobile phases with certain aminopropyl bonded phase columns. To eliminate the combination of mobile phase and column as a cause of long term noise replace the column with Restriction capillary (G1362-87301) and re-evaluate the detector performance.

Potential Causes for Baseline Problems

Noise (short term)

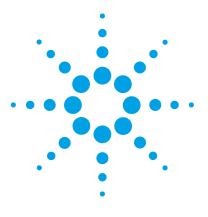
Typically the sources for short term noise are either electronic (check the settings for the peak widths, check for ambient sources of electronic noise) or they are related to the solvents, their composition and flow (in order to verify this, turn off the pump, consider degassing your solvents, use only premixed solvents).

Wander (long term noise)

Excessive wander is an indication for a general system or environmental instability (system or laboratory might not be thermally stable, control instrument and laboratory temperature). Verify that the solvent properties are constant over time (flush out contamination, use only stabilized and premixed solvents). Clean the parts in the flow path and allow the system to be flushed out and equilibrated.

Drift

Excessive drift is an indication for a general system or environmental instability (system or laboratory might not be thermally stable, control instrument and laboratory temperature). Verify that the solvent properties are constant over time (flush out of contamination, use only stabilized solvents). Clean parts in the flow path and allow the system to be flushed out and equilibrated.


Detector Equilibration

The Refractive Index (RI) is a function of temperature, pressure and a property of the used solvent (it changes with solvent composition, degassing level and due to any trace of contamination). Therefore the Refractive Index Detector will detect any change in any of these parameters as a change in its signal and a variation of its baseline. Therefore the detector will trace down any instabilities in the system and the environment as well. It may sometimes appear, as if the detector itself was unstable or generating an unstable baseline, where in fact, the detector is simply displaying the instabilities of the environment and the rest of the system. By this the detector is often - without justification blamed for instabilities, which it does not generate itself, but only detect. The fact that this detector is a universal detector makes it also sensitive to instabilities introduced to it from outside the detector.

This makes it very important to have a very stable environment and system for achieving best possible baseline stability. The baseline will get the better, the longer the system is used under identical and stable conditions. Keep the temperature in your laboratory and system constant and controlled. Ideally a system with an RID should be used always with the same type of analysis (stable solvent composition, temperature, flow rates, don't switch the pump off after analysis, instead just recycle solvents or at least reduce only the flow. Switch valves and settings only when needed. Don't expose the detector to draft of air or to vibrations). A change of any of these parameters may require a considerable amount of time for re-equilibration.

5 Optimizing the Refractive Index Detector

Refractive Index Detector Optimization

Agilent 1260 Infinity RID User Manual

6

Troubleshooting and Diagnostics

Overview of the Module's Indicators and Test Functions 82 Status Indicators 84 Power Supply Indicator 84 Module Status Indicator 85 User Interfaces 86 Agilent Lab Advisor Software 87

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

Overview of the Module's Indicators and Test Functions

Status Indicators

6

The module is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the module. The status indicators provide a quick visual check of the operation of the module.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the module generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see chapter Error Information).

Not-Ready Messages

During the wait for a specific condition to be reached or completed the detector will generate a not-ready message. For each message a short description is provided (see "Not-Ready Messages" on page 105).

Refractive Index Calibration

Refractive index calibration is recommended after exchange of the optical unit to ensure correct operation of the detector. The procedure uses a solution of known refractive index compared to LC grade water (see "Refractive Index Calibration" on page 108).

Optical Balance

Optical balance allows the balance of light falling on the light receiving diodes to be restored. The sample and reference cells must both be fully purged before the procedure is started, see "Optical Balance" on page 113.

6 Troubleshooting and Diagnostics Status Indicators

Status Indicators

Two status indicators are located on the front of the module. The lower left indicates the power supply status, the upper right indicates the module status.

Status indicator	
Line power switch with green light	<u>م</u>

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is *ON*.

Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.

If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.

- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 163. Then try a firmware update (see "Replacing the Detector's Firmware" on page 127). If this does not help, a main board replacement is required.

6 Troubleshooting and Diagnostics User Interfaces

User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary (see chapter "Test Functions and Calibrations").
- Preferred tool should be the Agilent Lab Advisor software, see "Agilent Lab Advisor Software" on page 87.
- The Agilent ChemStation B.04.02 and above may not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor software.

Agilent Lab Advisor Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

The Instrument Utilities is a basic version of the Lab Advisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.

6 Troubleshooting and Diagnostics

Agilent Lab Advisor Software

7

What Are Error Messages 91 General Error Messages 92 Timeout 92 Shutdown 93 Remote Timeout 93 Lost CAN Partner 94 Leak Sensor Open 94 Leak Sensor Short 95 **Compensation Sensor Open** 95 **Compensation Sensor Short** 96 Fan Failed 96 Leak 97 Open Cover 97 Cover Violation 98 **Refractive Index Detector Specific Error Messages** 99 Thermal Fuse Open 99 Heater Resistance Too High 99 Heater Fuse 100 Wrong Temperature Profile 100 **Undecipherable Temperature Signal** 100 Maximum Temperature Exceeded 101 Purge Valve Fuse Blown 101 Recycle Valve Fuse Blown 101 Purge Valve Not Connected 102 Recycle Valve Missing 102 Lamp Voltage too Low 102 Lamp Voltage too High 103 Lamp Current too High 103

Agilent Lab Advisor Software

Lamp Current too Low 103 Wait Function Timed Out 104 Not-Ready Messages 105 Purge Time Running 105 Wait for Purge 105 Unbalanced Diodes 106 Not Enough Light 106 Too Much Light 106

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Probable cause

- The analysis was completed successfully, and the timeout function switched off the module as requested.
- 2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.

Suggested actions

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Probable cause		Suggested actions
1	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.
3	The degasser failed to generate sufficient vacuum for solvent degassing.	Check the vacuum degasser for an error condition. Refer to the <i>Service Manual</i> for the degasser or the 1260 pump that has the degasser built-in.

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause		Suggested actions
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Probable cause		Suggested actions	
1	CAN cable disconnected.	Ensure all the CAN cables are connected correctly.	
		• Ensure all CAN cables are installed correctly.	
2	Defective CAN cable.	Exchange the CAN cable.	
3	Defective main board in another module.	Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.	

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable cause		Suggested actions
1 Leak sensor not conr board.	nected to the main	Please contact your Agilent service representative.
2 Defective leak senso	r.	Please contact your Agilent service representative.
3 Leak sensor incorrec pinched by a metal c	,	Please contact your Agilent service representative.

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause	Suggested actions

1 Defective leak sensor.

Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause

Suggested actions

1 Defective main board.

Please contact your Agilent service representative.

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause

Suggested actions

1 Defective main board.

Please contact your Agilent service representative.

Fan Failed

Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

This limit is given by 2 revolutions/second for longer than 5 seconds.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Pr	obable cause	Suggested actions
1	Loose fittings.	Ensure all fittings are tight.
2	Broken capillary.	Exchange defective capillaries.
3	Leaking valve.	Exchange valve.
4	Leaking flow cell.	Exchange optical unit.

Open Cover

Error ID: 0205

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed, the fan is switched off, and the error message is generated.

Probable cause		Suggested actions
1	The top foam was removed during operation.	Please contact your Agilent service representative.
2	Foam not activating the sensor.	Please contact your Agilent service representative.
3	Defective sensor or main board.	Please contact your Agilent service representative.

Cover Violation

Error ID: 7461

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed while the lamps are on (or if an attempt is made to switch on for example the lamps with the foam removed), the lamps are switched off, and the error message is generated.

representative.

Probable cause		Suggested actions
1	The top foam was removed during operation.	Please contact your Agilent service representative.
2	Foam not activating the sensor.	Please contact your Agilent service

Refractive Index Detector Specific Error Messages

Thermal Fuse Open

Error ID: 2680

The thermal fuse of the optical unit heater has failed.

Probable cause	Suggested actions
1 Heater cable disconnected.	Please contact your Agilent service representative.
2 Defective main board.	Please contact your Agilent service representative.
3 Defective thermal fuse.	Please contact your Agilent service representative.

Heater Resistance Too High

Error ID: 2681

The resistance of the heater foil is above the set limit.

Probable cause	Suggested actions
1 Heater cable disconnected.	Please contact your Agilent service representative.
2 Defective main board.	Please contact your Agilent service representative.
3 Defective heater.	Please contact your Agilent service representative.

7

Refractive Index Detector Specific Error Messages

Heater Fuse

Error ID: 2682

The electronic fuse of the heater has been activated.

Probable cause	Suggested actions
1 Short in heater circuit.	Powercycle the module.
2 Defective main board.	Please contact your Agilent service representative.
3 Defective heater.	Please contact your Agilent service representative.

Wrong Temperature Profile

Error ID: 2683

After turning ON the optical unit heat control, the temperature does not increase at a sufficiently fast rate to reach the set point.

Probable cause		Suggested actions
1	Defective main board.	Please contact your Agilent service representative.
2	Defective heater.	Please contact your Agilent service representative.

Undecipherable Temperature Signal

Error ID: 2684

Probable cause		Suggested actions
1	Heater cable disconnected.	Please contact your Agilent service representative.
2	Defective main board.	Please contact your Agilent service representative.
3	Defective heater.	Please contact your Agilent service representative.

Refractive Index Detector Specific Error Messages

Maximum Temperature Exceeded

Error ID: 2685

The maximum heater temperature has been exceeded.

Probable cause	Suggested actions
1 Defective main board.	Please contact your Agilent service representative.
2 Defective heater.	Please contact your Agilent service representative.

Purge Valve Fuse Blown

Error ID: 2686

The electronic fuse on the purge valve has been activated.

Probable cause		Suggested actions
1	Short in purge valve circuit.	Power cycle the module.
2	Defective purge valve.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Recycle Valve Fuse Blown

Error ID: 2687

The electronic fuse on the recycle valve has been activated.

Probable cause	Suggested actions
1 Short in recycle valve circuit.	Power cycle the module.
2 Defective recycle valve.	Please contact your Agilent service representative.
3 Defective main board.	Please contact your Agilent service representative.

Refractive Index Detector Specific Error Messages

Purge Valve Not Connected

Error ID: 2688

When activated no response was received from the purge valve.

Probable cause	Suggested actions
1 Purge valve disconnected.	Please contact your Agilent service representative.
2 Defective purge valve.	Please contact your Agilent service representative.
3 Defective main board.	Please contact your Agilent service representative.

Recycle Valve Missing

Error ID: 2689

When activated no response was received from the recycle valve.

Probable cause		Suggested actions
1	Recycle valve disconnected.	Please contact your Agilent service representative.
2	Defective recycle valve.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Lamp Voltage too Low

Error ID: 2693

Probable cause		Suggested actions
1	Defective main board.	Please contact your Agilent service representative.
2	Defective lamp or optics.	Please contact your Agilent service representative.

Error Information 7 Refractive Index Detector Specific Error Messages

Please contact your Agilent service representative.

Suggested actions

Lamp Voltage too High

Error ID: 2690

Probable cause

- 1 Contaminated flow cell. Flush the flow cell.
- 2 Defective main board.
- 3 Defective lamp or optics. Please contact your Agilent service representative.

Lamp Current too High

Error ID: 2691

Probable cause

- **1** Defective main board. Please contact your Agilent service representative.
- 2 Defective lamp or optics. Please contact your Agilent service representative.

Lamp Current too Low

Error ID: 2694

Probable cause

- **1** Optical unit cable disconnected.
- 2 Defective main board.
- **3** Defective lamp or optics.

Suggested actions

Suggested actions

Please contact your Agilent service representative.

- Please contact your Agilent service representative.
- Please contact your Agilent service representative.

Refractive Index Detector Specific Error Messages

Wait Function Timed Out

Error ID: 2692

Wait for temperature or wait for defined signal has not been fulfilled within the specified time frame.

Probable cause

Suggested actions

1 Time too short.

Increase time.

Not-Ready Messages

Not-ready messages are displayed during the wait for a specific condition to be reached or completed or while a self-test procedure is running. In the event of such a failure, the yellow status indicator at the front of the detector is switched ON.

This section describes the meaning of detector not-ready messages.

Purge Time Running

Event ID 2600

Probable cause	Suggested actions

1 The purge valve is open, liquid is flowing through both sample and reference cell.

Allow the reference purge time to elapse.

Wait for Purge

Event ID 2692

Probable cause

1 The detector is waiting after the automatic Allow the v purge of the reference cell.

Suggested actions

Allow the wait time to elapse.

Unbalanced Diodes

Probable cause

1 The diode balance value is outside the pre-set range -0.5 to +0.5, an unequal amount of light is falling on the two light receiving diodes.

Suggested actions

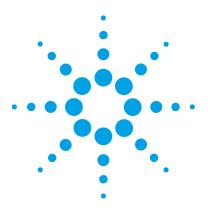
- Flush the reference cell with the mobile phase being used.
- Perform the RID Optical Balance procedure (see "The Optical Balance Procedure" on page 114).

Not Enough Light

Probable cause

Suggested actions

 There is insufficient light falling on the light receiving diodes to generate a refractive index signal. Flush the flow cell with the mobile phase being used to ensure that it is free of air bubbles or other contamination.


Too Much Light

The amount of light falling on the light receiving diodes is too high to generate a refractive index signal.

Probable cause

Suggested actions

1 The sample cell content is varying too much Purge reference and sample cell. from the reference cell.

Test Functions

8

Refractive Index Calibration 108 Optical Balance 113 Using the Build-in Test Chromatogram 116 Procedure Using the Agilent LabAdvisor 116

This chapter describes the detector's built in test functions.

Refractive Index Calibration

Refractive Index Calibration

The refractive index calibration is based on a sucrose calibration solution, which has a known refractive index compared to LC grade water. After both the sample and reference cells have been purged with LC grade water the sucrose solution is introduced into the flow cell and then the built-in refractive index calibration functionality is used.

Filling the sample cell with the sucrose calibration solution will give a theoretical detector response of 512,000 nRIU +/- 5,000 nRIU. The calibration algorithm will allow the actual detector response, if different, to be changed to the theoretical value.

NOTE

Refractive index calibration is only required after exchange of the optical unit or the main (RIM) - board.

The Refractive Index Calibration Procedure

When	Recommended after exchange of the optical unit or RIM board.		
Tools required		Description Laboratory balance	
Parts required	#	p/n	Description
	1		DAB/Ph Eur/BP/JP/NF/USP Grade Sucrose
	1	9301-1446	Syringe
	1	9301-0407	Needle
	1	5190-5111	Syringe filter, 0.45 μm, 100/pk
	1	0100-1516	Fitting male PEEK, 2/pk

- **1** Preparation of the sucrose calibration solution.
 - **a** To prepare 25 ml of the calibration solution 87.5 mg of the Sucrose sample is required.
 - **b** Add the weighed amount of sample into a suitable volumetric flask.
 - **c** Dispense 10 ml of LC grade water into the flask and shake or stir to dissolve.
 - d Dilute the contents of the flask to volume with LC grade water.

Wait five minutes and shake again. The solution is now ready for use.

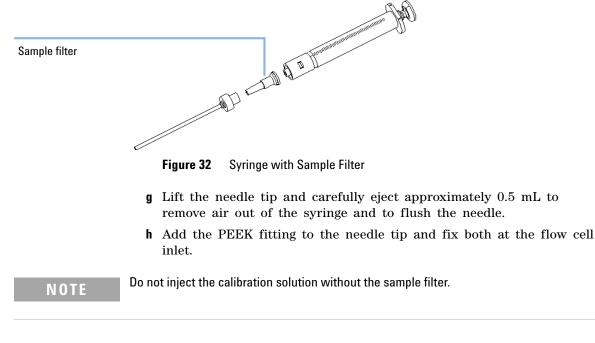
- **2** Preparing the pump.
 - **a** Fill a suitable solvent bottle with LC grade water.
 - **b** Connect this bottle to Channel A of the pump, A1 if a binary pump.
- **3** Using the Agilent LabAdvisor Software (B.01.03 SP4 or later) there are three screens used for the calibration process.
 - a RID Module Service Center (via Tools).

Generic control parameters			
	Recycle Valve On/Off		
	Recycle Valve off		
Purge Valve On/Off			
	Purge Valve on]]	
	Purge Valve off		

Refractive Index Calibration

b RID Tools screen (via Tools). (If an Agilent pump is part of the system, the pump section is active.)

Tools: RID Tool Screen	
Reference Cell	
No pump available	
	−Pump TUse Pump
Purge Time [min] 🗾 🗮	Purge Flow [ml/min]
Purge Reference Ce	11
	Last Purge: 2010-01-22 10:23:42
Recycle Valve	
⊙ Waste	O Recycle
Optical Balance	
© Off	
O On	-1.000 0 1.000
Diode Balan	ce:


c RID Calibration screen (via Calibrations).

N A	est Na Iodule Approx.	 Refractive Index Calibration G1362A:DE91600336 1 min		Description	This procedure performs a refractive index calibration.
Г	est Proc	Running 	e cell).		
 Switch recycle valve to 'Waste' Fill cell with standard. Verify calibration data. Calibrate refractive index. 		Refractive In	HPLC grade water If not, the 'RID To fulfill this task.	have the sample and reference cell purged with . Are the cells already purged with water? old' screen offers the 'Purge Reference Cell' tool to ondition is fulfilled, 'Cancel' otherwise.	

Use the functions as described in the steps below.

4 Flushing the degasser and pump.

- **5** Purging the sample and reference cells.
 - a The purge valve will automatically switch to the ON position.
 - **b** Using a syringe or LC pump flush the sample and reference cell with about 20 mL of LC grade water. (If an Agilent pump is part of the system, the pump section is active).
 - **c** The purge valve will automatically switch to the OFF position when you click **continue**.
- **6** Fill the sample cell with calibration solution.
 - a Remove the inlet capillary or flushing syringe from the in port.
 - **b** Take the syringe and fix the needle to the syringe adapter.
 - c Suck about 1.5 mL of the calibration sample into the syringe.
 - **d** Keep the syringe in a horizontal position.
 - e Remove the needle.
 - **f** Add the filter to the syringe and fit the needle to filter.

i Slowly inject about 1.0 ml and wait for about 10 s to inject another 0.1 mL. This will assure that the cell is filled properly.

Refractive Index Calibration

- 7 Calibrate refractive index.
 - **a** If the detector response differs from the theoretical response of 512,000 nRIU +/- 5,000 nRIU enter the theoretical value (512,000) in the dialog box. If the detector response is within the theoretical response click **OK**.

NOTE

Rinse the sample cell with pure water at a minimum of 1.5 mL/min to flush the Sucrose from the cell and the capillaries. When organic solvent is sequentially applied (without rinsing), a blockage of capillaries may occur.

Optical Balance

Optical Balance

When the sample and reference cells both contain the same liquids an equal amount of light should fall on each light receiving diode, the diode balance will equal 0. If this balance of light needs to be corrected the optical balance procedure can be used.

Diode balance is calculated as follows:

diode balance = $\frac{(diode_1 - diode_2)}{(diode_1 + diode_2)}$

Where:

- $diode_1 = signal proportional to the amount of light falling on diode_1$
- diode₂ = signal proportional to the amount of light falling on diode₂

Optical balance adjustment is a manual procedure where the position of the light beam falling on the light receiving diode is adjusted using the zero glass adjustment screw.

NOTE

The detector will become not-ready when the diode balance value falls outside the range - 0.5 to + 0.5.

NOTE

Both sample and reference cell must be purged with the same solvent before optical balance is performed. Prior to performing this procedure, the system must be well equilibrated.

The Optical Balance Procedure

When	When light falling on light receiving diodes is out of balance.	
Tools required	Flat head screwdriver	
NOTE	This procedure should only be performed to correct a permanent misalignment of the light beam that cannot be eliminated by flushing the sample and the reference cell with the same solvent and by equilibrating the system.	

- **1** Purging the sample and reference cells.
 - **a** Switch the purge valve to the **ON** position.
 - **b** Purge the sample and reference cells for around 10 min with the solvents to be used.
 - c Switch the purge valve to the OFF position
- 2 Start optical balance.
 - **a** Using the Agilent LabAdvisor Software (B.01.03 SP3 or later) open the RID Tools screen.

Tools: RID Tool Screen	
Reference Cell	
No pump available	
Pump Use Pump	
Purge Time [min]	nin] 🛛 🕂 Solvent Channel
Purge Reference Cell	
	Last Purge: 2010-01-22 10:23:42
Recycle Valve	
Optical Balance	
© Off	
C On -1.000	0 1.000
Diode Balance:	

- **3** Adjust optical balance.
 - **a** While monitoring the optical balance use the flat-headed screwdriver to turn the zero glass adjustment screw slowly (see Figure 33 on page 115).
 - ${\bf b}$ When the diode balance value reaches 0.00 optical balance is restored.

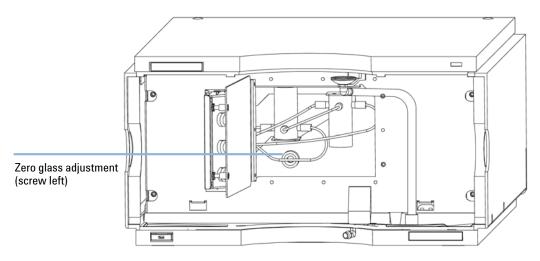


Figure 33 Turning the zero glass adjustment screw

Using the Build-in Test Chromatogram

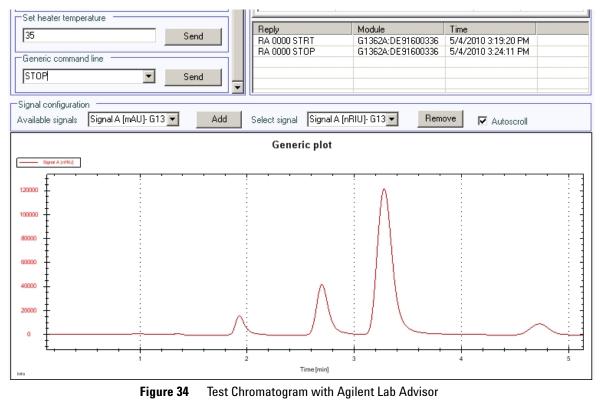
This function is available from the Agilent ChemStation, Lab Advisor and Instant Pilot.

The built-in Test Chromatogram can be used to check the signal path from the detector to the data system and the data analysis or via the analog output to the integrator or data system. The chromatogram is continuously repeated until a stop is executed either by means of a stop time or manually.

NOTE

The peak height is always the same but the area and the retention time depend on the set peakwidth, see example below.

Procedure Using the Agilent LabAdvisor


This procedure works for all Agilent 1200 Infinity detectors (DAD, MWD, VWD, FLD and RID). The example figure is from the RID detector.

- 1 Assure that the default LC method is loaded via the control software.
- **2** Start the Agilent Lab Advisor software (B.01.03 SP4 or later) and open the detector's **Tools** selection.
- **3** Open the test chromatogram screen

Tools: Test Chrom	atogram	
Current Status	Disabled	Switch Test Chromatogram on
		Switch Test Chromatogram off

- 4 Turn the Test Chromatogram on.
- **5** Change to the detector's **Module Service Center** and add the detector signal to the Signal Plot window.

Using the Build-in Test Chromatogram

6 To start a test chromatogram enter in the command line: STRT

7 To stop the test chromatogram enter in the command line: STOP

NOTE

The test chromatogram is switched off automatically at the end of a run.

8 Test Functions

Using the Build-in Test Chromatogram

Agilent 1260 Infinity RID User Manual

Maintenance

Introduction to Maintenance 120 Warnings and Cautions 121 Detector Maintenance Procedures 122 Cleaning the Module 123 Flow Cell Flushing 124 Correcting Leaks 125 Replacing Leak Handling System Parts 126 Replacing the Detector's Firmware 127 Replacing the Interface Board 128

This chapter provides general information on maintenance of the detector.

Introduction to Maintenance

The module is designed for easy maintenance. Maintenance can be done from the front with module in place in the system stack.

 NOTE
 There are no serviceable parts inside.

 Do not open the module.
 Do

Warnings and Cautions

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- → Do not remove the cover of the module.
- → Only certified persons are authorized to carry out repairs inside the module.

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

Use your Agilent products only in the manner described in the Agilent product user guides.

CAUTION

Safety standards for external equipment

→ If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment. **Detector Maintenance Procedures**

Detector Maintenance Procedures

On the following pages maintenenance procedures are described that can be carried out without opening the main cover.

Procedure	Typical Frequency	Notes
Flow cell flushing	If flow cell is contaminated.	
Leak sensor drying	If leak has occurred.	Check for leaks.
Leak handling System replacement	If broken or corroded.	Check for leaks.
Replacing the detector's Firmware	If not up to date or corrupted.	

 Table 7
 Maintenance Procedures

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

Flow Cell Flushing

When	If flow cell is contaminated	
Tools required	Description Glass syringe Adapter	
Parts required	 # Description 1 Strong solvent, tubings to waste 	
WARNING	Dangerous solvents	
	The strong solvents used in this procedure are toxic and flammable and proper precautions are necessary.	
	→ Wear protective gloves and goggles.	
	→ Don't expose yourself to the vapors.	
NOTE	Aqueous solvents in the flow cell can build up algae. Therefore do not leave aqueous solvents in the flow cell for long periods. Add a small percentage of organic solvents (e.g. Acetonitrile or Methanol ~ 5%).	
NOTE	The strong solvent should dissolve any potential contaminants in the flow cell. For example water for aqueous mobile phase buffers, chloroform or tetrahydrofuran for not water soluble contaminants.	
	 In case the cell is contaminated, follow the procedure below. 1 Flush with the strong solvent. 2 Leave this solution in the cell for about one hour. 3 Flush with mobile phase. 	
NOTE	Do not exceed the flow cell pressure limit of 5 bar (0.5 MPa).	

Correcting Leaks

When If a leakage has occurred in the valve area or at the capillary connections

Tools required

Two 1/4 inch wrenches for capillary connections

- **1** Remove the front cover.
- **2** Open the service door.

Tissue

- **3** Use tissue to dry the leak sensor area and the leak pan.
- **4** Observe the interface ports and the valve area for leaks and correct, if required.
- **5** Close the service door.
- **6** Replace the front cover.

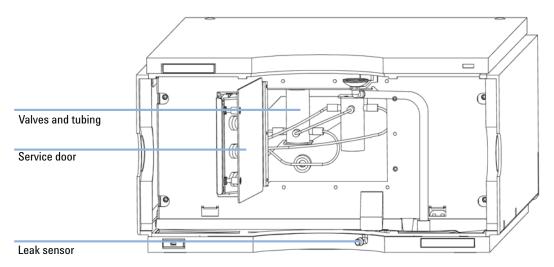


Figure 35

Observing for Leaks

9 **Maintenance**

Replacing Leak Handling System Parts

Replacing Leak Handling System Parts

If the parts are corroded or broke

When	

Parts required

the parts are	e corroded	or broken
---------------	------------	-----------

#	p/n	Description
1	5061-8388	Leak funnel
1	5041-8389	Leak funnel holder
1	5042-9974	Tubing Flex (1.5 m)

Leak tubing 120 mm required.

- **1** Remove the front cover.
- 2 Pull the leak funnel out of the leak funnel holder.
- **3** Pull out the leak funnel with the tubing.
- **4** Insert the leak funnel with the tubing in its position.
- 5 Insert the leak funnel into the leak funnel holder.
- **6** Replace the front cover.

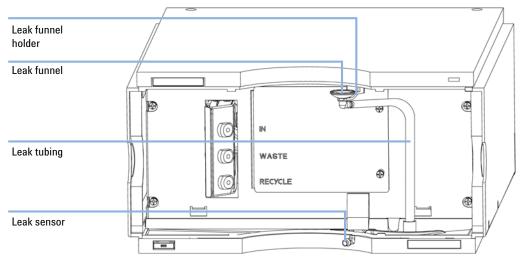


Figure 36 **Replacing Leak Handling System Parts**

9

Replacing the Detector's Firmware

When	 The installation of newer firmware might be necessary if a newer version solves problems of older versions or to keep all systems on the same (validated) revision.
	 The installation of older firmware might be necessary to keep all systems on the same (validated) revision or if a new module with newer firmware is added to a system or if third party control software requires a special version.
Tools required	Description
	LAN/RS-232 Firmware Update Tool
OR	Agilent Lab Advisor software
OR	Instant Pilot G4208A (only if supported by module)
Parts required	# Description
	1 Firmware, tools and documentation from Agilent web site
Preparations	Read update documentation provided with the Firmware Update Tool.
	To upgrade/downgrade the module's firmware carry out the following steps:
	1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.
	$\ \ {\rm http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761} \\$
	2 For loading the firmware into the module follow the instructions in the documentation.
	Module Specific Information
	There is no specific information for this module.

Replacing the Interface Board

Replacing the Interface Board

For all repairs inside the detector or for installation of the board

Parts required

When

#	p/n	Description
1	G1351-68701	Interface board (BCD) with external contacts and BCD outputs
1	G1369B or G1369-60002	Interface board (LAN)

"Setting the 8-bit Configuration Switch (without On-Board LAN)" on page 160

1 To replace the interface board unscrew the two screws, remove the board, slide in the new interface board and fix it with the board's screws.

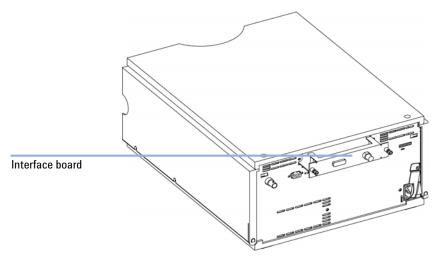
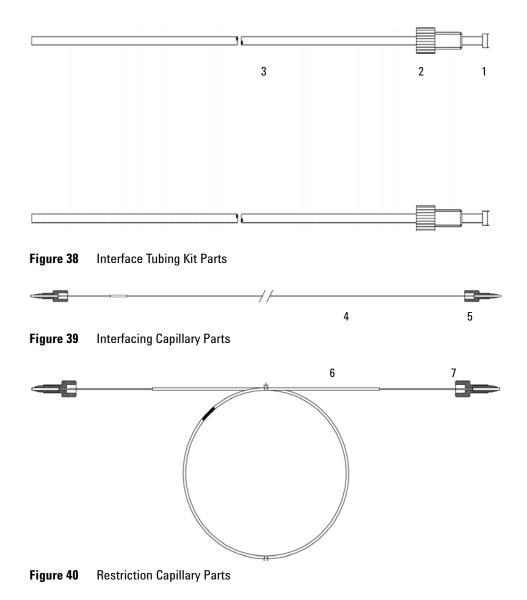


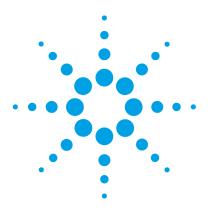
Figure 37 Location of the Interface Board

This chapter provides information on parts for maintenance.



Accessory Kits

Accessory kit (G1362-68755) contains some accessories needed for the installation of the detector.


p/n	Description
G1362-68706	Interface tubing kit
G1362-87300	Interfacing capillary
G1362-87301	Restriction capillary
5181-1516	CAN cable, Agilent module to module, 0.5 m
0100-1847	PEEK adapter 1/4-28 to 10-32 (Adapter AIV to solvent inlet tubes)

Parts for Maintenance 10 Accessory Kits

10 Parts for Maintenance

Accessory Kits

Agilent 1260 Infinity RID User Manual

11 Identifying Cables

Cable Overview 134 Analog Cables 136 Remote Cables 138 BCD Cables 141 CAN/LAN Cables 143 External Contact Cable 144 Agilent Module to PC 145 Agilent 1200 Module to Printer 146

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

p/n		Description
3590	0-60750	Agilent module to 3394/6 integrators
3590	0-60750	Agilent 35900A A/D converter
0104	6-60105	Analog cable (BNC to general purpose, spade lugs)
Remo	ote cables	
p/n		Description
03394	4-60600	Agilent module to 3396A Series I integrators
		3396 Series II / 3395A integrator, see details in section "Remote Cables" on page 138 $$
0339	6-61010	Agilent module to 3396 Series III / 3395B integrators
5061	-3378	Remote Cable
0104	6-60201	Agilent module to general purpose
BUD	aphlac	

BCD cables

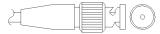
p/n	Description
03396-60560	Agilent module to 3396 integrators
G1351-81600	Agilent module to general purpose

CAN cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)


External Contact Cable

p/n	Description
G1103-61611	External contact cable - Agilent module interface board to general
	purposes

RS-232 cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

p/n 35900-60750	Pin 3394/6	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name
	Shield	Shield	Analog -
	Center	Center	Analog +

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
5	2	Black	Analog -
	3	Red	Analog +
~	Ś		

Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

p/n 03394-60600	Pin 3396A	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	5,14	7 - Red	Ready	High
	1	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

p/n 03396-61010	Pin 33XX	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
• • •	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	14	7 - Red	Ready	High
	4	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series III / 3395B Integrators

Agilent Module to Agilent 35900 A/D Converters

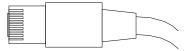
'n 5061-3378	Pin 35900 A/D	Pin Agilent module	Signal Name	Active (TTL)
	1 - White	1 - White	Digital ground	
	2 - Brown	2 - Brown	Prepare run	Low
	3 - Gray	3 - Gray	Start	Low
	4 - Blue	4 - Blue	Shut down	Low
	5 - Pink	5 - Pink	Not connected	
	6 - Yellow	6 - Yellow	Power on	High
	7 - Red	7 - Red	Ready	High
	8 - Green	8 - Green	Stop	Low
	9 - Black	9 - Black	Start request	Low

o⁄n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
	White	1	Digital ground	
	Brown	2	Prepare run	Low
	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
s 0 15	Yellow	6	Power on	High
	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

Agilent Module to General Purpose

BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to


Agilent Module to General Purpose

p/n G1351-81600	Wire Color	Pin Agilent module	Signal Name	BCD Digit
	Green	1	BCD 5	20
1. Series	Violet	2	BCD 7	80
	Blue	3	BCD 6	40
	Yellow	4	BCD 4	10
	Black	5	BCD 0	1
	Orange	6	BCD 3	8
	Red	7	BCD 2	4
	Brown	8	BCD 1	2
	Gray	9	Digital ground	Gray
	Gray/pink	10	BCD 11	800
	Red/blue	11	BCD 10	400
	White/green	12	BCD 9	200
	Brown/green	13	BCD 8	100
	not connected	14		
	not connected	15	+ 5 V	Low

Agilent Module to 3396 Integrators

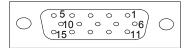
p/n 03396-60560	Pin 3396	Pin Agilent module	Signal Name	BCD Digit
	1	1	BCD 5	20
	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Low

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m


LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

11 Identifying Cables

External Contact Cable

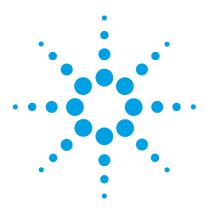
External Contact Cable

One end of this cable provides a 15-pin plug to be connected to Agilent modules interface board. The other end is for general purpose.

Agilent Module Interface Board to general purposes

p/n G1103-61611	Color	Pin Agilent module	Signal Name
	White	1	EXT 1
	Brown	2	EXT 1
	Green	3	EXT 2
	Yellow	4	EXT 2
	Grey	5	EXT 3
	Pink	6	EXT 3
	Blue	7	EXT 4
	Red	8	EXT 4
	Black	9	Not connected
	Violet	10	Not connected
	Grey/pink	11	Not connected
	Red/blue	12	Not connected
	White/green	13	Not connected
	Brown/green	14	Not connected
	White/yellow	15	Not connected

Agilent Module to PC


p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

11 Identifying Cables

Agilent 1200 Module to Printer

Agilent 1200 Module to Printer

p/n	Description
5181-1529	Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs. Centronics connector on the other end (NOT FOR FW UPDATE). For use with G1323 Control Module.

Agilent 1260 Infinity RID User Manual

12 Hardware Information

Firmware Description 148 Electrical Connections 151 Rear View of the Module 152 Interfaces 153 Overview Interfaces 156 Setting the 8-bit Configuration Switch (without On-Board LAN) 160 Communication Settings for RS-232C 161 Special Settings 163 Optional Interface Boards 164 Instrument Layout 168 Early Maintenance Feedback 169

This chapter describes the module in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called main system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- error handling,
- diagnostic functions,
- · or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Updates

Firmware updates can be done using your user interface:

- · PC and Firmware Update Tool with local files on the hard disk
- · Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent Lab Advisor software B.01.03 and above

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

NOTE

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

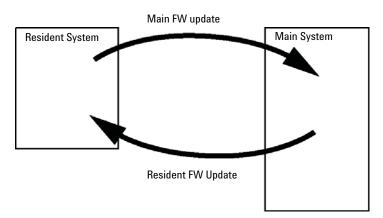


Figure 41 Firmware Update Mechanism

12 Hardware Information

Firmware Description

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Rear View of the Module

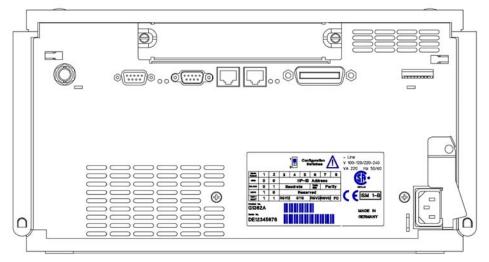


Figure 42 Rear View of Detector – Electrical Connections and Label

NOTE

The GPIB interface has been removed with the introduction of the 1260 Infinity modules.

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

Table 8	Agilent 1200 Infinity Series Interfaces
---------	---

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Pumps							
G1310B Iso Pump G1311B Quat Pump G1311C Quat Pump VL G1312B Bin Pump K1312B Bin Pump Clinical Ed. G1312C Bin Pump VL 1376A Cap Pump G2226A Nano Pump G5611A Bio-inert Quat Pump	2	Yes	No	Yes	1	Yes	
G4220A/B Bin Pump G4204A Quat Pump	2	No	Yes	Yes	No	Yes	CAN-DC- OUT for CAN slaves
G1361A Prep Pump	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers							
G1329B ALS G2260A Prep ALS	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B
G1364B FC-PS G1364C FC-AS G1364D FC-μS G1367E HiP ALS K1367E HiP ALS Clinical Ed. G1377A HiP micro ALS G2258A DL ALS G5664A Bio-inert FC-AS G5667A Bio-inert Autosampler	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B CAN-DC- OUT for CAN slaves
G4226A ALS	2	Yes	No	Yes	No	Yes	

12 Hardware Information

Interfaces

Table 8 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Detectors							
G1314B VWD VL G1314C VWD VL+	2	Yes	No	Yes	1	Yes	
G1314E/F VWD K1314F Clinical Ed.	2	No	Yes	Yes	1	Yes	
G4212A/B DAD K4212B DAD Clinical Ed.	2	No	Yes	Yes	1	Yes	
G1315C DAD VL+ G1365C MWD G1315D DAD VL G1365D MWD VL	2	No	Yes	Yes	2	Yes	
G1321B FLD K1321B FLD Clinical Ed. G1321C FLD	2	Yes	No	Yes	2	Yes	
G1362A RID	2	Yes	No	Yes	1	Yes	
G4280A ELSD	No	No	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others							
G1170A Valve Drive	2	No	No	No	No	No	1
G1316A/C TCC K1316C TCC Clinical Ed.	2	No	No	Yes	No	Yes	
G1322A DEG K1322A DEG Clinical Ed.	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	Yes	
G4225A DEG K4225A DEG Clinical Ed.	No	No	No	Yes	No	Yes	

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
G4227A Flex Cube	2	No	No	No	No	No	CAN-DC- OUT for CAN slaves 1
G4240A CHIP CUBE	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED), K1330B

Table 8 Agilent 1200 Infinity Series Interfaces

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- RS-232C as interface to a computer
- REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

 Table 9
 RS-232C Connection Table

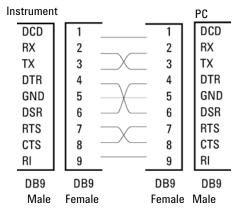


Figure 43 RS-232 Cable

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

Table 10	Remote Signal Distribution
----------	----------------------------

Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Special Interfaces

There is no special interface for this module.

Setting the 8-bit Configuration Switch (without On-Board LAN)

Setting the 8-bit Configuration Switch (without On-Board LAN)

The 8-bit configuration switch is located at the rear of the module.

This module does not have its own on-board LAN interface. It can be controlled through the LAN interface of another module, and a CAN connection to that module.

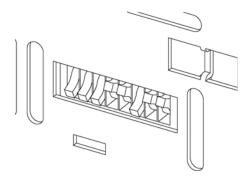


Figure 44 Configuration switch (settings depend on configured mode)

All modules without on-board LAN:

- default should be ALL DIPS DOWN (= best settings)
 - Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- DIP 1 DOWN and DIP 2 UP allows special RS-232 settings
- for boot/test modes DIPS 1+2 must be UP plus required mode

NOTE

For normal operation use the default (best) settings.

Switch settings provide configuration parameters for serial communication protocol and instrument specific initialization procedures.

Setting the 8-bit Configuration Switch (without On-Board LAN)

NOTE With the introduction of the Agilent 1260 Infinity, all GPIB interfaces have been removed. The preferred communication is LAN.

The following tables represent the configuration switch settings for the modules without on-board LAN only.

 Table 11
 8-bit Configuration Switch (without on-board LAN)

Mode Select	1	2	3	4	5	6	7	8
RS-232C	0	1	Baudrate			Data Bits	Parity	
Reserved	1	0	Reserved					
TEST/BOOT	1	1	RSVD SYS			RSVD	RSVD	FC

NOTE

NOTE

The LAN settings are done on the LAN Interface Card G1369B/C. Refer to the documentation provided with the card.

Communication Settings for RS-232C

The communication protocol used in the column compartment supports only hardware handshake (CTS/RTR).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the column instrument must be powered up again in order to store the values in the non-volatile memory.

 Table 12
 Communication Settings for RS-232C Communication (without on-board LAN)

Mode Select	1	2	3	4	5	6	7	8
RS-232C	0	1		Baudrate		Data Bits	Pari	ty

12 Hardware Information

Setting the 8-bit Configuration Switch (without On-Board LAN)

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

Switches		Baud Rate	Switches			Baud Rate	
3	4	5		3	4	5	
0	0	0	9600	1	0	0	9600
0	0	1	1200	1	0	1	14400
0	1	0	2400	1	1	0	19200
0	1	1	4800	1	1	1	38400

 Table 13
 Baudrate Settings (without on-board LAN)

 Table 14
 Data Bit Settings (without on-board LAN)

Switch 6	Data Word Size
0	7 Bit Communication
1	8 Bit Communication

Table 15 Parity Settings (without on-board LAN)

Swite	hes	Parity
7	8	
0	0	No Parity
0	1	Odd Parity
1	1	Even Parity

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.

Special Settings

The special settings are required for specific actions (normally in a service case).

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 16
 Boot Resident Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	1	0	0	0

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

Loss of data

CAUTION

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

→ Save your methods and data before executing a forced cold start.

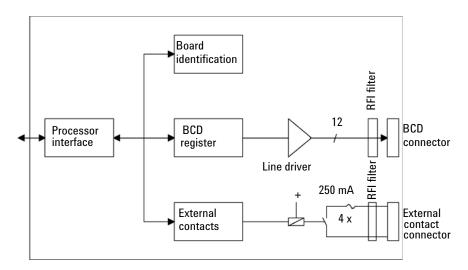
If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

 Table 17
 Forced Cold Start Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	0	0	0	1

Optional Interface Boards

BCD / External Contact Board


The Agilent 1200 Infinity Series modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 153 for details.

Optional Interface Boards

- p/n Description
- G1351-68701 Interface board (BCD) with external contacts and BCD outputs

2110-0004 Fuse for BCD board, 250 mA

The BCD board provides a BCD output for the bottle number of the Agilent 1200 Series autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).

There are general purpose cables available to connect the BCD output, see "BCD Cables" on page 141 and the external outputs, see "External Contact Cable" on page 144 to external devices.

Pin	Signal name	BCD digit
1	BCD 5	20
2	BCD 7	80
3	BCD 6	40
4	BCD 4	10
5	BCD 0	1
6	BCD 3	8
7	BCD 2	4
8	BCD 1	2
9	Digital ground	
10	BCD 11	800
11	BCD 10	400
12	BCD 9	200
13	BCD 8	100
15	+5V	Low

Table 18Detailed connector layout (1200)

LAN Communication Interface Board

The Agilent modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 153 for details.

p/n Description

	G1369B or G1369-60002	Interface board (LAN)
OR	G1369C or G1369-60012	Interface board (LAN)

NOTE

One board is required per Agilent 1260 Infinity instrument. It is recommended to add the LAN board to the detector with highest data rate.

NOTE For the configuration of the G1369 LAN Communication Interface card refer to its documentation.

The following cards can be used with the Agilent 1260 Infinity modules.

IADIE 19 LAIN DUALUS	Table	19	LAN Boards
----------------------	-------	----	------------

Туре	Vendor	Supported networks
Interface board (LAN) (G1369B or G1369-60002) or Interface board (LAN) (G1369C or G1369-60012)	Agilent Technologies	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) recommended for re-ordering
LAN Communication Interface board (G1369A or G1369-60001)	Agilent Technologies	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) (<i>obsolete</i>)
J4106A ¹	Hewlett Packard	Ethernet/802.3, RJ-45 (10Base-T)
J4105A ¹	Hewlett Packard	Token Ring/802.5, DB9, RJ-45 (10Base-T)
J4100A ¹	Hewlett Packard	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) + BNC (10Base2)

¹ These cards may be no longer orderable. Minimum firmware of these Hewlett Packard JetDirect cards is A.05.05.

Recommended LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

12 Hardware Information Instrument Layout

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

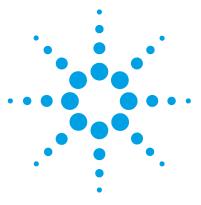
Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (**EMF**) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the EMF Counters


The user-settable **EMF** limits for the **EMF Counters** enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the **EMF** limits must be optimized over one or two maintenance cycles. Initially the default **EMF** limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the **EMF counters**. Enter these values (or values slightly less than the displayed values) as **EMF** limits, and then reset the **EMF counters** to zero. The next time the **EMF counters** exceed the new **EMF** limits, the **EMF** flag will be displayed, providing a reminder that maintenance needs to be scheduled.

12 Hardware Information

Early Maintenance Feedback

Agilent 1260 Infinity RID User Manual

13 Appendix

General Safety Information 172 The Waste Electrical and Electronic Equipment Directive 175 Lithium Batteries Information 176 Radio Interference 177 Sound Emission 178 Solvent Information 179 Agilent Technologies on Internet 180

This chapter provides safetey and other general information.

General Safety Information

General Safety Information

Safety Symbols

Table 20	Safety Symbols
----------	----------------

Symbol	Description
⚠	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.
\$	Indicates dangerous voltages.
	Indicates a protected ground terminal.
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.
<u>Ass</u>	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for

General Safety Information

replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

The Waste Electrical and Electronic Equipment Directive

Abstract

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC), adopted by EU Commission on 13 February 2003, is introducing producer responsibility on all electric and electronic appliances starting with 13 August 2005.

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category:

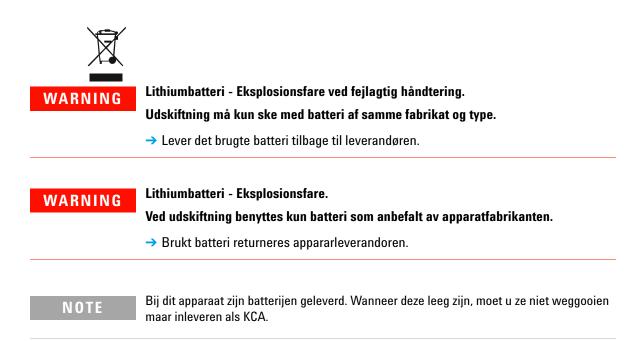
With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a Monitoring and Control Instrumentation product.

 NOTE
 Do not dispose off in domestic household waste

 To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

13 Appendix

Lithium Batteries Information


Lithium Batteries Information

WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.

Radio Interference

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

Solvent Information

Flow Cell

To protect optimal functionality of your flow-cell:

- Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.
- If the flow cell is transported while temperatures are below 5 $^{\circ}$ C, it must be assured that the cell is filled with alcohol.
- Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add a small % of organic solvents (e.g. acetonitrile or methanol ~5 %).

Use of Solvents

Observe the following recommendations on the use of solvents.

- · Brown glass ware can avoid growth of algae.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 μm filters.
- Avoid the use of the following steel-corrosive solvents:
 - Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - High concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - Halogenated solvents or mixtures which form radicals and/or acids, for example:

 $2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides,
- · Solvents containing strong complexing agents (e.g. EDTA),
- Mixtures of carbon tetrachloride with 2-propanol or THF.

13 Appendix

Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Index

Index

8

8-bit configuration switch without On-Board LAN 160

A

accessory kit parts 35, 130 Agilent Lab Advisor software 87 Agilent Lab Advisor 87 Agilent on internet 180 algae 179, 179 algea 124 ambient non-operating temperature 29 ambient operating temperature 29 analog signal 157 analog cable 136 apg remote 158 ASTM environmental conditions 28 automatic purge 16 automatic recycling after analysis 16 automatic zero before analysis 16

B

balance 83 baseline noise and drift 67 baseline noise 78 baseline drift 78 equilibration 79 noise 78 wander 78 battery safety information 176 BCD board external contacts 164 BCD cable 141 bench space 28 board HP JetDirect card 166 boards LAN card 166

C

cable analog 136 BCD 141 143 CAN connecting APG remote 41 connecting CAN 41 connecting LAN 41 connecting the ChemStation 41 connecting the power 41 external contact 144 LAN 143 remote 138 RS-232 145 cables 134 analog BCD 134 135 CAN external contact 135 LAN 135 134 overview 134 remote RS-232 135

calibration 82 refractive index 82 CAN cable 143 cautions and warnings 121 check out sample setting the chromatographic conditions 63 checking baseline noise and drift evaluation 73 setting the test conditions 67 cleaning 123 Communication settings RS-232C 161 compensation sensor open 95 compensation sensor short 96 compliance 10 condensation 28 configuration one stack 38 40 two stack control 57

D

defect on arrival 34 degasser 77 delivery checklist 34 detection principle 13 detector design 13 dimensions 29 drift 78

Ε

electrical connections

Index

descriptions of 151 electronic waste 175 FMF early maintenance feedback 169 environment 28. 28. 28 equilibration 79 error messages compensation sensor open 95 compensation sensor short 96 cover violation 98 fan failed 96 heater fuse 100 heater resistance too high 99 ignition without cover 97.97 103 lamp current too high lamp current too low 103 lamp voltage too high 103 lamp voltage too low 102 leak sensor open 94 leak sensor short 95 leak 97 lost CAN partner 94 maximum temperature exceeded 101 purge valve fuse blown 101 purge valve not connected 102 recycle valve fuse blown 101 recycle valve missing 102 remote timeout 93 shutdown 93 thermal fuse open 99 timeout 92 undecipherable temperature signal 100 wrong temperature profile 100 external contact cable 144 external contacts BCD board 164

F

```
fan failed
           96
features
    safety and maintenance
                            31
firmware
    description
                148
    main system
                148
    resident system
                     148
    update tool 149
    updates 149, 127, 127
    upgade/downgrade
                         127
    upgrade/downgrade
                         127
flow cell pressure 76
flow cell
    flushing 124
    solvent information
                       179
flow path 16
frequency range
                 29
frits and filters 76
front view of module
                     46
```

G

general error messages 92 GLP features 31 GLP 10

Η

how the detector operates automatic purge 16 automatic recycling after analysis 16 automatic zero before analysis 16 flow path 16 purge valve 16 recycle valve 16 HP JetDirect card 166 humidity 29

installation bench space 28 delivery checklist 34 28. 28. 28 environment flow connections 49 of in, waste and recycle capillaries 49 of the detector 46 site requirements 25 unpacking 34 instrument layout 168 interface board (BCD/LAN) replacing 128 interfaces 153 internet 180 introduction introduction to the detector 10 operation of the detector 11

L

IAN 143 cable communication interface board 166 leak handling system replacing 126 leak sensor open 94 95 leak sensor short leak 97 leaks correcting 125 light intensity control 10 line frequency 29 line voltage 29 lithium batteries 176 lost CAN partner 94

Μ

maintenance

definition of 120 169 feedback replacing firmware 127, 127 measurements 14 message cover violation 98 heater fuse 100 heater resistance too high 99 ignition without cover 97.97 lamp current too high 103 lamp current too low 103 lamp voltage too high 103 lamp voltage too low 102 maximum temperature exceeded 101 not enough light 106 purge time running 105, 105 purge valve fuse blown 101 purge valve not connected 102 recycle valve fuse blown 101 recycle valve missing 102 remote timeout 93 thermal fuse open 99 unbalanced diodes 106 undecipherable temperature signal 100 wait for purge 105 wrong temperature profile 100 mobile phase recycling 77 more settings 61

Ν

noise 78 non-operating altitude 29 non-operating temperature 29 not-ready message 105 not-ready messages not enough light 106 purge time running 105, 105 unbalanced diodes 106 wait for purge 105

0

operating Altitude 29 operating temperature 29 optical balance procedure 114 optical balance 113 optical unit temperature 76 optimization check for leaks 76 consider solvent changes with time 77 control the optical unit temperature 76 do not overpressurize the flow cell 76 eliminate mobile phase/column combination problems 78 flush the degasser 77 position the solvent and waste reservoirs correctly 76 recycle mobile phase 77 stack configuration 37 use an appropriate response time 77 use the correct solvents 76 verify frit, filter and fitting quality

Ρ

packaging damaged 34 parts identification accessory kit 35, 130 cables 133 parts damaged 34 missina 34 performance specifications 30 physical specifications 29 power consideration 26

power consumption29power cords27power supply indicator84

R

radio interference 177 refractive index calibration procedure 108 refractive index calibration 108 refractive index detector optimization 55, 76 refractive index calibration 108 optical balance 113 remote cable 138 repairs cautions and warnings 121 correction leaks 125 flow cell flushing 124 replacing firmware 127, 127 replacing interface board (BCD/LAN) 128 replacing leak handling system 126 response time 77 restriction capillary 78 RS-232C cable 145 communication settings 161

S

76

safety class I 173 safety information lithium batteries 176 safety general information 173 standards 29 symbols 172 settings 59

Index

shutdown 93 site requirements 25 27 power cords solvent and waste reservoirs 76 Solvent Information 55, 179 solvents 76, 77, 179 sound emission 178 special interfaces 159 special settings boot-resident 163 forced cold start 163 specification physical 29 specifications analog outputs 31 communications 31 GLP features 31 performance 30 safety and maintenance 31 stack configuration front view 40 rear view 41 status indicator 85 system setup and installation optimizing stack configuration 37

Т

temperature sensor 97 test chromatogram 116 tests test chromatogram 116 timeout 92 troubleshooting error messages 82, 82, 91 status indicators 82, 84

U

unpacking 34 user interfaces 86 using the detector detector control 57 detector settings 59 more settings 61 optimization 76, 55

V

voltage range 29

W

wander 78 warnings and cautions 121 waste electrical and electronic equipment 175 WEEE directive 175 weight 29

Index

www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1260 Infinity Refractive Index Detector G1362:

- introduction,
- specifications,
- installation,
- configuration,
- optimizing,
- troubleshooting and diagnostics,
- maintenance,
- parts identification,
- hardware information,
- safety and related information.

© Agilent Technologies 2010-2013, 2014

Printed in Germany 01/2014

G1362-90011 Rev. C

