Agilent 1100 Series
Diode Array and
Multiple Wavelength
Detectors

Reference Manual
Notices

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1315-90005

Edition

Edition 05/2004

Printed in Germany

Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn

Software Revision

This guide is valid for A.01.xx revisions of the Agilent 1100 Series Diode Array and Multiple Wavelength Detectors software, where xx refers to minor revisions of the software that do not affect the technical accuracy of this guide.

2
Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Safety Notices

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

Software and technical data rights granted to federal government customers include only those rights customarily provided to end user Customers of Software. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and FAR 12.212 (Computer Software) and, for Department of Defense purchases, DFARS 252.227-7015

rights not conveyed under these terms, it must negotiate with Agilent to establish acceptable terms in a written agreement executed by all relevant parties.

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
In This Guide...

This manual contains information for using your Diode Array and Multiple Wavelength Detectors.

1 Installing the Detector

How to install the detector

2 How to optimize the Detector

How to optimize the detector

3 Troubleshooting and Test Functions

The detector’s built-in troubleshooting and test functions

4 Repairing the Detector

Instructions on how to repair the detector

5 Identifying Parts and Materials

Detailed illustrations and listings for parts and materials identification for the detector

6 Introduction to the Detector

An introduction to the detector, instrument overview, theory of operation, external communication and internal connectors

7 Control Module Screens for Agilent 1100 DAD and MWD
This chapter is intended to introduce an operator to the screens available for operation of the Agilent 1100 diode array detector (DAD) with the Agilent 1100 control module.

8 Specifications

Performance specifications of the detector

Annex A Safety Information
Sample and Reference Wavelength and Bandwidth 36
Slit Width 39
Optimizing Spectral Acquisition (DAD only) 42
Margin for Negative Absorbance 43
Optimizing Selectivity 44
Quantifying Coeluting Peaks by Peak Suppression 44
Ratio Qualifiers for Selective Detection of Compound Classes 46
3 Troubleshooting and Test Functions

Overview of the Detector’s Indicators and Test Functions 50

Status Indicators 51
Power Supply Indicator 51
Detector Status Indicator 51

Error Messages 53
Timeout 54
Shutdown 55
Remote Timeout 56
Synchronization Lost 57
Leak 58
Leak Sensor Open 60
Leak Sensor Short 61
Compensation Sensor Open 62
Compensation Sensor Short 63
Fan Failed 64
Open Cover 65
Cover Violation 66
Visible Lamp Current 67
Visible Lamp Voltage 68
Communication Error 69
Calibration Values Invalid 70
Diode Current Leakage 71
Holmium Oxide Test Failed 72
UV Lamp Current 73
UV Lamp Voltage 74
UV Ignition Failed 75
UV Heater Current 76
New Messages with the G1315B and G1365B detectors
Module Type Changed 78
Illegal Value From Temperature Sensor Mounted On The Fan
Assembly 80
Illegal Value From „Air Inlet” Temperature Sensor 81
Heater Failed 82
Heater Power At Limit 83
Wavelength Recalibration 84
Test Functions 85
Holmium Oxide Test 86
Intensity Test 88
Cell Test 90
Dark-Current Test 91
Filter Test 93

4 Repairing the Detector

Introduction into Repairing the Detector 96
Using the ESD Strap 98
Overview of the Repairing of the Detector 99
Simple Repairs 101
Exchanging a Lamp 102
Exchanging a Flow Cell 105
Repairing the Standard or Semi-Micro Flow Cell 108
Repairing the High Pressure Flow Cell 112
Replacing Capillaries on a Standard Flow Cell 114
Replacing Capillaries on a Semi-Micro and High Pressure Flow Cell 119
Nano Flow Cell - Replacing or Cleaning 122
Cleaning or Exchanging the Holmium Oxide Filter 127
Correcting Leaks 130
Replacing Leak Handling System Parts 131
Cleaning or Replacing Coupling Lens Assembly 132
Cleaning or Replacing Cell Support Window 135
Exchanging Internal Parts 138
Removing the Top Cover and Foam 140
Exchanging the Detector Main Board 143
Entering the Serial Number using the Control Module 146
Entering the Serial Number using the Agilent ChemStation 147
Exchanging the Fan (G1315A/G1365A) 148
Replacing Fan Parts (G1315B/G1365B) 150
Removing the Optical Unit (G1315A/G1365A) 154
Removing the Optical Unit (G1315B/G1365B) 156
Exchanging the Source Lens (Achromat) Assembly 158
Replacing the Holmium Oxide Filter Motor 162
Exchanging the Power Supply 164
Exchanging the Leak Sensor 167
Replacing Status Light Pipe 170
Installing the Optical Unit (G1315A/G1365A) 171
Installing the Optical Unit (G1315B/G1365B) 173
Replacing the Foam and the Top Cover 175
Assembling the Main Cover 178
Replacing the Interface Board 179
Replacing the Detector’s Firmware 180

5 Identifying Parts and Materials

Overview of Main Assemblies 182
Optical Unit Assembly 184
Standard Flow Cell 186
Semi-Micro Flow Cell 188
High Pressure Flow Cell 190
Nano Flow Cells 192
Fan Assembly Parts 196
Holmium Oxide Filter 197
Coupling Lens Assembly 198
Source Lens (Achromat) Assembly 199
Cell Support Assembly 200
Control Module 201
Sheet Metal Kit (G1315A/G1365A) 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Metal Kit (G1315B/G1365B)</td>
<td>203</td>
</tr>
<tr>
<td>Plastic Parts</td>
<td>204</td>
</tr>
<tr>
<td>Foam Parts</td>
<td>205</td>
</tr>
<tr>
<td>Power and Status Light Pipes</td>
<td>206</td>
</tr>
<tr>
<td>Leak Parts</td>
<td>207</td>
</tr>
<tr>
<td>Accessory Kit</td>
<td>208</td>
</tr>
<tr>
<td>Cable Overview</td>
<td>210</td>
</tr>
<tr>
<td>Analog Cables</td>
<td>212</td>
</tr>
<tr>
<td>Remote Cables</td>
<td>215</td>
</tr>
<tr>
<td>BCD Cables</td>
<td>220</td>
</tr>
<tr>
<td>Auxiliary Cable</td>
<td>222</td>
</tr>
<tr>
<td>CAN Cable</td>
<td>223</td>
</tr>
<tr>
<td>External Contact Cable</td>
<td>224</td>
</tr>
<tr>
<td>RS-232 Cable Kit</td>
<td>225</td>
</tr>
<tr>
<td>LAN Cables</td>
<td>226</td>
</tr>
</tbody>
</table>

6 Introduction to the Detector

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Detector</td>
<td>228</td>
</tr>
<tr>
<td>Optical System Overview</td>
<td>229</td>
</tr>
<tr>
<td>Electrical Connections</td>
<td>232</td>
</tr>
<tr>
<td>Instrument Layout</td>
<td>234</td>
</tr>
<tr>
<td>Early Maintenance Feedback (EMF)</td>
<td>235</td>
</tr>
<tr>
<td>EMF Counters</td>
<td>235</td>
</tr>
<tr>
<td>Using the EMF Counters</td>
<td>235</td>
</tr>
</tbody>
</table>
Electronics 237

Detector Main Board (DAM/MWM) 238

Firmware Description 246
 Firmware Updates 247

Raw Data Conversion to Absorbance 248
 Rawdata File 251
 Peak Detector 251
 Spectra Acquisition Modes (DAD only) 252

Optional Interface Boards 253
 BCD Board 253
 LAN Communication Interface Board 255

Interfaces 256
 Analog Signal Output 257
 GPIB Interface 257
 CAN Interface 257
 Remote Interface 257 RS-232C 259

Setting the 8-bit Configuration Switch 261
 GPIB Default Addresses 262
 Communication Settings for RS-232C Communication 263

 Forced Cold Start Settings 264 Stay-Resident Settings 265

The Main Power Supply Assembly 266
Control Module Screens for Agilent 1100 DAD and MWD

- Major keys on the Agilent 1100 Control Module 270
- Control Module - Unsupported Module 271
- Screens available from the Analysis screen 272
- Screens available from the System screen 282
- Screens available from the Records screen 284
- Diagnostics and Tests 290

Specifications

- Performance Specifications 296

Safety Information

- General Safety Information 300
- Lithium Batteries Information 303
- Disposal of Mercury from Deuterium Lamp 304
- Radio Interference 305
- Sound Emission 306
- UV-Radiation 307
- Solvent Information 308
- Declaration of Conformity for HOX2 Filter 310
- Agilent Technologies on Internet 311

Index
1

Installing the Detector

Site Requirements 14
Physical Specifications 16
Unpacking the Detector 17
Optimizing the Stack Configuration 20
Installing the Detector 22
Flow Connections to the Detector 25
Site Requirements

A suitable environment is important to ensure optimal performance of the detector.

Power Consideration

The detector power supply has wide ranging capabilities and accepts any line voltage in the range mentioned in Table 1. Consequently, there is no voltage selector in the rear of the detector. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

To disconnect the detector from line, unplug the power cord. The power supply still uses some power, even if the power switch on the front panel is turned off.

Shock hazard or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

WARNING

Make sure to have easy access to the power cable of the instrument, in order to disconnect the instrument from line.

Power Cords

Different power cords are offered as options with the detector. The female end of all power cords is identical. It plugs into the power-input socket at the rear of the detector. The male end of each power cord is different and designed to match the wall socket of a particular country or region.
Never operate your instrumentation from a power outlet that has no ground connection. Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Bench Space

The detector dimensions and weight (see Table 1) allows you to place the detector on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench should carry an Agilent 1100 Series system, make sure that the bench is designed to bear the weight of all modules.

The detector should be operated in a horizontal position.

Environment

Your detector will work within the specifications at ambient temperatures and relative humidity described in Table 1.

ASTM drift tests require a temperature change below 2 °C/hour (3.6 °F/hour) over one hour period. Our published drift specification (refer also to “Performance Specifications” on page 296) is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1 °C/hour (1.8 °F/hour). Turbulences around one minute or less can be ignored.

CAUTION
1 Installing the Detector

Do not store, ship or use your detector under conditions where temperature fluctuations could cause condensation within the detector. Condensation will damage the system electronics. If your detector was shipped in cold weather, leave it in its box and allow it to warm up slowly to room temperature to avoid condensation.

Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>11.5 kg (26 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions (width × depth × height)</td>
<td>345 × 435 × 140 mm (13.5 × 17 × 5.5 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 – 120 or 220 – 240 VAC, ± 10 %</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz ± 5 %</td>
<td></td>
</tr>
<tr>
<td>Power consumption (G1315/65B)</td>
<td>300 VA / 125 W / 427 BTU</td>
<td>Maximum</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 – 55 °C (32 – 131 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40 – 70 °C (-4 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95%, at 25 – 40 °C (77 – 104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 2000 m (6500 ft)</td>
<td></td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>Up to 4600 m (14950 ft)</td>
<td>For storing the detector</td>
</tr>
<tr>
<td>Safety standards: IEC, CSA, UL, EN</td>
<td>Installation category II, pollution degree 2</td>
<td></td>
</tr>
</tbody>
</table>
Unpacking the Detector

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the detector may have been damaged during shipment.

If there are signs of damage, please do not attempt to install the detector.

CAUTION

Delivery Checklist

Ensure all parts and materials have been delivered with the detector. The delivery checklist is shown below. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>1</td>
</tr>
<tr>
<td>Power cable</td>
<td>1</td>
</tr>
<tr>
<td>UV-lamp (Part number 5181-1530)</td>
<td>1</td>
</tr>
<tr>
<td>CAN cable (Part number 5181-1516)</td>
<td>1</td>
</tr>
<tr>
<td>Flow cell</td>
<td>As ordered</td>
</tr>
<tr>
<td>Reference Manual</td>
<td>1</td>
</tr>
</tbody>
</table>
1 Installing the Detector

Accessory kit (see Table 3)

Detector Accessory Kit Contents

Table 3 Accessory Kit Contents (Part Number G1315-68705)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon Tubing flexible i.d. 0.8 mm (flow cell to waste), re-order 5 m</td>
<td>5062-2462</td>
<td>2 m</td>
</tr>
<tr>
<td>Corrugated tubing (to waste), re-order 5 m</td>
<td>5062-2463</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Fitting male PEEK</td>
<td>0100-1516</td>
<td>2</td>
</tr>
<tr>
<td>Capillary column-detector 380 mm lg, 0.17 mm i.d. includes:</td>
<td>G1315-87311</td>
<td>1</td>
</tr>
<tr>
<td>Ferrule front SST</td>
<td>0100-0043</td>
<td>2</td>
</tr>
<tr>
<td>Ferrule back SST</td>
<td>0100-0044</td>
<td>2</td>
</tr>
<tr>
<td>Fitting SST</td>
<td>79814-22406</td>
<td>2</td>
</tr>
<tr>
<td>Hex key set 1 – 5 mm</td>
<td>8710-0641</td>
<td>1</td>
</tr>
<tr>
<td>Wrench open end 1/4 – 5/16 inch</td>
<td>8710-0510</td>
<td>1</td>
</tr>
<tr>
<td>Wrench open end 4 mm</td>
<td>8710-1534</td>
<td>1</td>
</tr>
<tr>
<td>ESD wrist strap</td>
<td>9300-1408</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1 Waste Tubing Parts
Figure 2 Inlet Capillary (Column-Detector) Parts

Ferrule front
Ferrule back
Fitting male SST
Capillary

This side is preinstalled
Optimizing the Stack Configuration

If your detector is part of a complete Agilent 1100 Series system, you can ensure optimum performance by installing the following configuration. This configuration optimizes the system flow path, ensuring minimum delay volume.

Figure 3 Recommended Stack Configuration (Front View)
Figure 4 Recommended Stack Configuration (Rear View)
Installing the Detector

Preparations
- Locate bench space
- Provide power connections
- Unpack the detector

Parts required
- Detector
- Power cord, for other cables see below and “Cable Overview” on page 210
- ChemStation and/or Control Module G1323A/B

1. Install the LAN interface board in the detector (if required), see “Replacing the Interface Board” on page 179.

2. Place the detector in the stack or on the bench in a horizontal position.

3. Ensure the line power switch at the front of the detector is OFF.
Connect the power cable to the power connector at the rear of the detector.

5 Connect the CAN cable to other Agilent 1100 Series modules. 6 If a Agilent ChemStation is the controller, connect either

- the GPIB cable to the detector or
- the LAN connection to the LAN interface board in the detector.

NOTE

If a Agilent 1100 DAD/MWD/FLD is in the system, the LAN/GPIB should be connected to the DAD/MWD/FLD (due to higher data load).

7 Connect the analog cable(s) (optional).

8 Connect the APG remote cable (optional) for non-Agilent 1100 Series instruments.

9 Turn on power by pushing the button at the lower left hand side of the detector. The status LED should be green.
The detector is turned on when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned off when the line power switch is protruding and the green light is off.

NOTE

To disconnect the detector from line, unplug the power cord. The power supply still uses some power, even if the power switch at the front panel is turned off.

NOTE

The detector was shipped with default configuration settings. To change these settings see “Setting the 8-bit Configuration Switch” on page 261.
Flow Connections to the Detector

Preparations
Detector is installed in the LC system.

Parts required
Other modules
Parts from accessory kit, see “Detector Accessory Kit Contents” on page 18.
Two wrenches 1/4 – 5/16 inch for capillary connections

WARNING

When working with solvents please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

NOTE
The flow cell is shipped with a filling of isopropanol (also recommended when the instrument and/or flow cell is shipped to another location). This is to avoid breakage due to subambient conditions.
3 Insert the flow cell and install the capillaries to the capillary holder (top is inlet, bottom is outlet).
1 Installing the Detector

5 Assemble the column-detector capillary from the accessory kit. One side is already factory-assembled.

6 Connect the newly assembled fitting of the capillary to the top fitting holder and the other end to the column.

7 Assemble the waste tubing from the accessory kit.

8 Connect the waste tubing to the bottom fitting holder and a waste tubing.

©
The installation of the detector is now complete.

NOTE The detector should be operated with the front cover in place to protect the flow cell area against strong drafts from the outside and to cover the deuterium lamp.

Some types of the Agilent deuterium lamps show a light ring during operation. This is not harmful, refer to “UV-Radiation” on page 307.
2

How to optimize the Detector

Optimizing the Detector Performance 30

Optimization Overview 31

Optimizing for Sensitivity, Selectivity, Linearity and Dispersion 33

Optimizing Selectivity 44
Optimizing the Detector Performance

The detector has a variety of parameters that can be used to optimize performance. Depending on whether signal or spectral data need to be optimized, different settings are recommended. The following sections describe optimization for:

- signal sensitivity, selectivity and linearity,
- spectral sensitivity and resolution (DAD only), and
- disk space required for storing data.

The information in this chapter should be seen as a basic introduction to diode array detector technics. Some of these technics may not be available in the instrument firmware or the user interfaces (Control Module and/or Agilent Chemstation).

How to Get the Best Detector Performance

The information below will guide you on how to get the best detector performance. Follow these rules as a start for new applications. It gives rules-of-thumb for optimizing detector parameters.

Optimization Overview

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of flow cell</td>
<td>peak resolution versus sensitivity</td>
</tr>
<tr>
<td>Choose flow cell according to used column, see Figure 7.</td>
<td></td>
</tr>
</tbody>
</table>
2 Connection of flow cell

- For flow rates from 0.5 ml/min connect column using the zero-dead-volume fittings of the detector.
- For small column i.d. (e.g. 1 mm) the inlet capillary of the micro flow cell can be connected directly to the column.

3 Setting the peak width (response time)

- Use peak width according Figure 7 as starting point.
- Set the peak-width close to the width of a narrow peak of interest in your chromatogram.

4 Setting wavelength and bandwidth

- Sample wavelength:
 - Never miss a peak by the use of a browser wavelength like 250 nm with 100 nm bandwidth.
 - Select specific wavelength with reduced bandwidth if you need selectivity, e.g. 250,10 nm and 360,100 nm as reference wavelength.
 - Set the sample wavelength to a peak or valley in the spectrum to get best linearity for high concentrations.

- Reference wavelength:
 - Select the reference wavelength with broad bandwidth (30...100 nm) wavelength range where your analytes have little or no absorbance (e.g. sample at 254 nm, reference at 320 nm).

5 Setting the slit width

- Use 4 nm slit for normal applications.
- Use narrow slit (e.g. 1 nm) if your analytes have narrow absorbance bands and for high concentrations.
- Use a wide slit (e.g. 16 nm) to detect very low concentrations.

- Optimizing spectral acquisition (DAD only)
 - Select spectra acquisition mode according to your needs (see “Options for storing spectra” on page 42).
 - Set the spectral wavelength range (for colorless samples 190...400 nm is sufficient).
 - Set step to 4 nm for normal use; set small step (and slit width) if high resolution of spectra with fine structure is wanted.

<table>
<thead>
<tr>
<th>Typical column length</th>
<th>Typical peak width</th>
<th>Recommended flow cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<= 5 cm</td>
<td>0.025 min</td>
<td>High pressure flow cell for</td>
</tr>
</tbody>
</table>

Table 4 Optimization Overview, continued

- Chromatographic resolution
- Peak resolution versus sensitivity versus disk space
- Sensitivity versus selectivity
- Sensitivity versus linearity
- Baseline drift due to RI effects
- Spectral resolution, sensitivity and linearity.
Optimizing for Sensitivity, Selectivity, Linearity and Dispersion

Flow Cell Path Length

Lambert-Beer’s law shows a linear relationship between the flow cell path length and absorbance.

\[I^0 = \varepsilon \cdot C \cdot d \]

Absorbance = \(-\log T = \log \frac{I}{I^0} \)

where

\(T \) is the transmission, defined as the quotient of the intensity of the transmitted light \(I \) divided by the intensity of the incident light, \(I^0 \).

\(\varepsilon \) is the extinction coefficient, which is a characteristic of a given substance under a precisely-defined set of conditions of wavelength, solvent, temperature and other parameters.

\(C \) is the concentration of the absorbing species (usually in g/l or mg/l), and \(d \) is the path length of the cell used for the measurement.

Therefore, flow cells with longer path lengths yield higher signals. Although noise usually increases little with increasing path length, there is a gain in signal-to-noise ratio. For example, in Figure 8 the noise increased by less than 10 % but a 70 %
increase in signal intensity was achieved by increasing the path length from 6 mm to 10 mm.

When increasing the path length, the cell volume usually increases — in our example from 5 – 13 µl. Typically, this causes more peak dispersion. As Figure 8 demonstrates, this did not affect the resolution in the gradient separation in our example.

As a rule-of-thumb the flow cell volume should be about 1/3 of the peak volume at half height. To determine the volume of your peaks, take the peak width as reported in the integration results multiply it by the flow rate and divide it by 3).

![Figure 8](image)

Figure 8 Influence of Cell Path Length on Signal Height

Traditionally LC analysis with UV detectors is based on comparing measurements with internal or external standards. To check photometric accuracy of the Agilent 1100 DAD/MWD it is necessary to have more precise information on path lengths of the flow cells.

The correct response is:

expected response * correction factor

Please find below the details of the Agilent 1100 DAD/MWD flow cells:

<table>
<thead>
<tr>
<th>Flow cell type</th>
<th>Cell volume</th>
<th>Part number</th>
<th>Path length (nominal)</th>
<th>Path length (actual)</th>
<th>Correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard flow cell</td>
<td>13 µl</td>
<td>G1315-60012</td>
<td>10 mm</td>
<td>9.80 ± 0.07 mm</td>
<td>10/9.8</td>
</tr>
<tr>
<td>Semi-micro flow cell</td>
<td>5 µl</td>
<td>G1315-60011</td>
<td>6 mm</td>
<td>5.80 ± 0.07 mm</td>
<td>6/5.8</td>
</tr>
</tbody>
</table>
Peak width (response time)

Response time describes how fast the detector signal follows a sudden change of absorbance in the flow cell. The detector uses digital filters to adapt response time to the width of the peaks in your chromatogram. These filters do not affect peak area nor peak symmetry. When set correctly, such filters reduce baseline noise significantly (see Figure 9), but reduce peak height only slightly. In addition, these filters reduce the data rate to allow optimum integration and display of your peaks and to minimize disk space required to store chromatograms and spectra.

Figure 9 Influence of Response Time on Signal and Noise

Figure 6 lists the filter choices of the detector. To get optimum results, set peak width as close as possible to a narrow peak of interest in your chromatogram. Response time will then be approximately 1/3 of the peak width, resulting in less than 5% peak-height reduction and less than 5% additional peak dispersion. Decreasing the peak width setting in the detector will result in less than 5% gain in peak height but baseline noise will increase by a factor of 1.4 for a factor of 2 response-time reduction. Increasing peak width (response time) by factor of two from the recommended setting (overfiltering) will reduce peak height by about 20% and reduce baseline noise by a factor of 1.4. This gives you the best possible signal-to-noise ratio, but may affect peak resolution.
Sample and Reference Wavelength and Bandwidth

The detector measures absorbance simultaneously at wavelengths from 190 to 950 nm. Two lamps provide good sensitivity over the whole wavelength range. The deuterium discharge lamp provides the energy for the UV range (190 to 400 nm) and the tungsten lamp emits light from 400 to 950 nm for the visible and short wave near infrared.

If you know little about the analytes in your sample, use both lamps and store all spectra over the full wavelength range. This provides full information but fills up your disk space rather quickly. Spectra can be used to check a peak’s purity and identity. Spectral information is also useful to optimize wavelength settings for your chromatographic signal.

The detector can compute and store at run time up to 5 signals with these properties:

- sample wavelength, the center of a wavelength band with the width of sample bandwidth (BW), and optionally
- reference wavelength, the center of a wavelength band with the width of reference bandwidth.

The signals comprises a series of data points over time, with the average absorbance in the sample wavelength band minus the average absorbance of the reference wavelength band.

Signal A in the detector default method is set to sample 250,100, reference 360,100, that is, the average absorbance from 200 – 300 nm minus the average absorbance from 300 – 400 nm. As all analytes show higher absorbance at 200 – 300 nm than at 300 –
400 nm, this signal will show you virtually every compound which can be detected by UV absorbance.

Many compounds show absorbance bands in the spectrum. Figure 10 shows the spectrum of anisic acid as an example.

To optimize for lowest possible detectable concentrations of anisic acid, set the sample wavelength to the peak of the absorbance band (that is, 252 nm) and the sample bandwidth to the width of the absorbance band (that is, 30 nm). A reference of 360,100 is adequate. Anisic acid does not absorb in this range.

If you work with high concentrations, you may get better linearity above 1.5 AU by setting the sample wavelength to a valley in the spectrum, like 225 nm for anisic acid.

Figure 10 Optimization of Wavelength Setting

A wide bandwidth has the advantage of reducing noise by averaging over a wavelength range — compared to a 4 nm bandwidth, the baseline noise is reduced by a factor of approximately 2.5, whereas the signal is about 75% of a 4-nm wide band. The signal-to-noise ratio for a 30 nm bandwidth is twice that for a 4-nm bandwidth in our example.
How to optimize the Detector

Figure 11
Influence of Bandwidth on Signal and Noise

Because the detector averages absorbance values that are calculated for each wavelength, using a wide bandwidth does not negatively impact linearity.

The use of a reference wavelength is highly recommended to further reduce baseline drift and wander induced by room temperature fluctuations or refractive index changes during a gradient.

An example of the reduction of baseline drifts is shown in Figure 12 for PTH-amino acids. Without a reference wavelength, the chromatogram drifts downwards due to refractive index changes induced by the gradient. This is almost completely eliminated by using a reference wavelength. With this technique, PTH-amino acids can be quantified in the low picomole range even in a gradient analysis.

Figure 12
Gradient Analysis of PTH-Amino Acids (1 pmol each), with and without Reference

Grad.: 0.02 m KH₂PO₄/ACN from 12% ACN to 45% ACN in 12 min
Slit Width

The detector has a variable slit at the entrance of the spectrograph. This is an effective tool to adapt the detector to changing demand of different analytical problems.

A narrow slit provides spectral resolution for analytes with very fine structures in the absorbance spectrum. An example of such a spectrum is benzene. The five main absorbance bands (fingers) are only 2.5 nm wide and just 6 nm apart from each other.

![Figure 13](image1.png)

Figure 13 Benzene at 1, 4 and 16 nm slit width

A wide slit uses more of the light shining through the flow cell. This gives lower baseline noise as shown in **Figure 14**.

![Figure 14](image2.png)

Figure 14 Influence of the Slit Width on Baseline Noise

However, with a wider slit, the spectrograph’s optical resolution (its ability to distinguish between different wavelengths) diminishes. Any photodiode receives light
How to optimize the Detector

within a range of wavelength determined by the slit width. This explains why the fine spectral structure of benzene disappears when using a 16-nm wide slit. Furthermore, the absorbance is no longer strictly linear with concentration for wavelengths at a steep slope of a compound’s spectrum.

Substances with fine structures and steep slopes like benzene are very rare.

In most cases the width of absorbance bands in the spectrum is more like 30 nm as with anisic acid (see Figure 10).

In most situations, a slit width of 4 nm will give the best results.

Use a narrow slit (1 or 2 nm) if you want to identify compounds with fine spectral structures or if you need to quantify at high concentrations (> 1000 mAU) with a wavelength at the slope of the spectrum. Signals with a wide bandwidth can be used to reduce baseline noise. Because (digital) bandwidth is computed as average of absorbance, there is no impact on linearity.

Use a wide (8 or 16 nm) slit when your sample contains very small concentrations. Always use signals with bandwidth at least as wide as the slit width.
Optimizing Spectral Acquisition (DAD only)

Storage of all spectra consumes a lot of disk space. It is very useful to have all spectra available during optimization of a method or when analyzing unique samples. However when running many samples of the same type, the large size of data files with all spectra may become a burden. The detector provides functions to reduce the amount of data, yet retaining the relevant spectral information.

Options for storing spectra

None
Store signals only. No peak purity checks nor library search features can be used for samples analyzed with this setting.

Apex
Only one spectrum per peak is stored; a peak must be higher than the value entered in Threshold (see below).

Apex + baseline
Stores spectra for peaks > threshold at the top and at baseline before and after each peak recommended minimum to do library searches with baseline corrected spectra.

Apex + slope +baseline
Add spectra at the up and down slope; required to do a minimum peak purity check.

All in peak
All spectra during all peak > Threshold are stored; required for a full peak purity check.

Every 2nd spectrum
Only every second spectrum is stored, occupying only half the disk space.

All
All spectra are stored.

Range

Only the wavelength range where the compounds in your sample absorb contains information that is useful for purity checks and library searches. Reducing the spectrum storage range saves disk space.

Step

Most substances have broad absorbance bands. Display of spectra, peak purity and library search works best if a spectrum contains 5 to 10 data points per width of the absorbance bands. For anisic acid (the example used before) a step of 4 nm would be sufficient. However a step of 2 nm gives a better display of the spectrum.

Threshold

Sets the peak detector. Only spectra from peaks higher than threshold will be stored when a peak-controlled storage mode is selected.
Margin for Negative Absorbance

The detector adjusts its gain during balance such that the baseline may drift slightly negative (about -100 mAU). In some special case, for example, when gradient with absorbing solvents are used, the baseline may drift to more negative values.

Only for such cases, increase the margin for negative absorbance to avoid overflow of the analog-to-digital converter.
Optimizing Selectivity

Quantifying Coeluting Peaks by Peak Suppression

In chromatography, two compounds may often elute together. A conventional dual-signal detector can only detect and quantify both compounds independently from each other if their spectra do not overlap. However, in most cases this is highly unlikely.

With a dual-channel detector based on diode-array technology, quantifying two compounds is possible even when both compounds absorb over the whole wavelength range. The procedure is called peak suppression or signal subtraction. As an example, the analysis of hydrochlorothiazide in the presence of caffeine is described. If hydrochlorothiazide is analyzed in biological samples, there is always a risk that caffeine is present which might interfere chromatographically with hydrochlorothiazide. As the spectra in Figure 15 show, hydrochlorothiazide is best detected at 222 nm, where caffeine also shows significant absorbance. It would therefore be impossible, with a conventional variable wavelength detector, to detect hydrochlorothiazide quantitatively when caffeine is present.

![Wavelength Selection for Peak Suppression](image)

With a UV-visible detector based on a diode array and the correct choice of a reference wavelength setting, quantitative detection is possible. To suppress caffeine, the reference wavelength must be set to 282 nm. At this wavelength, caffeine shows exactly the same absorbance as at 222 nm. When the absorbance values are subtracted...
from each another, any indication of the presence of caffeine is eliminated. In the same way, hydrochlorothiazide can be suppressed if caffeine is to be quantified. In this case the wavelength is set to 204 nm and the reference wavelength to 260 nm. Figure 16 shows the chromatographic results of the peak suppression technique.

The trade-off for this procedure is a loss in sensitivity. The sample signal decreases by the absorbance at the reference wavelength relative to the signal wavelength. Sensitivity may be decreased by as much as 10–30%.

Figure 16 Peak Suppression Using Reference Wavelength

Ratio Qualifiers for Selective Detection of Compound Classes

Ratio qualifiers can be used where, in a complex sample, only one particular class needs to be analyzed — a parent drug and its metabolites in a biological sample, for example. Another example is the selective analysis of derivatives after pre or postcolumn derivatization. Specifying a signal ratio that is typical for the sample class is one way of selectively plotting only those peaks that are of interest. The signal output remains at zero so long as the ratio is out of the user-specified ratio range. When the ratio falls within the range, the signal output corresponds to the normal absorbance, giving single, clear peaks on a flat baseline. An example is shown in Figure 17 and Figure 18.
In a four-component mixture, only biphenyl was recorded. The other three peaks were suppressed because they did not meet the ratio-qualifier criterion and therefore the output was set to zero. The characteristic wavelengths $\lambda_1 = 249$ nm and $\lambda_2 = 224$ nm were found from the spectra shown in Figure 17. The ratio range was set at $2 - 2.4$ ($2.2 \pm 10\%$). Only when the ratio between 249 and 224 nm was within this range, is the signal plotted. Of all four peaks, only the third fulfilled the criterion (Figure 18). The others were not plotted.
This chapter describes the detector’s built in troubleshooting and test functions.
Overview of the Detector’s Indicators and Test Functions

Status Indicators

The detector is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the detector. The status indicators provide a quick visual check of the operation of the detector (see page 51).

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the detector generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see “Error Messages” on page 53).

Wavelength Recalibration

Wavelength recalibration is recommended after repair of internal components, and on a regular basis to ensure correct operation of the detector. The detector uses the deuterium alpha and beta emission lines for wavelength calibration (see “Wavelength Recalibration” on page 84).

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components (see “Test Functions” on page 85).

Status Indicators

Two status indicators are located on the front of the detector. The lower left indicates the power supply status, the upper right indicates the detector status.
3 Troubleshooting and Test Functions

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the
indicator is illuminated \(\text{(green)} \) the power is \(\text{ON} \).

Detector Status Indicator

The detector status indicator indicates one of four possible detector conditions:
- When the status indicator is \(\text{OFF} \) (and power switch light is on), the detector is in a
\(\text{prerun} \) condition, and is ready to begin an analysis.
- A \(\text{green} \) status indicator, indicates the detector is performing an analysis \(\text{(run mode)} \).
- A \(\text{yellow} \) indicator indicates a \(\text{not-ready} \) condition. The detector is in a not-ready
state when it is waiting for a specific condition to be reached or completed (for
example, immediately after changing a set point), or while a self-test procedure is
running.
- An \(\text{error} \) condition is indicated when the status indicator is \(\text{red} \). An error condition
indicates the detector has detected an internal problem which affects correct
operation of the detector. Usually, an error condition requires attention (e.g. leak,
defective internal components). An error condition always interrupts the analysis.
Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the detector is switched on, and an entry is written into the detector logbook.

This section describes the meaning of detector error messages, and provides information on probable causes and suggested actions how to recover from error conditions.
Timeout

The timeout threshold was exceeded.

Probable Causes

- The analysis was completed successfully, and the timeout function switched off the pump as requested.
- A not-ready state was present during a sequence or multiple-injection run for a period longer than the timeout threshold.

Suggested Actions ✔ Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.
Shutdown

An external instrument has generated a shut-down signal (through CAN or REMOTE lines).

The detector continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Probable Causes

• Leak detected in an external instrument with a remote connection to the system.
• Shut-down in an external instrument with a remote connection to the system.
• The degasser failed to generate sufficient vacuum for solvent degassing.

Suggested Actions

✔ Fix the leak in the external instrument before restarting the pump.
✔ Check external instruments for a shut-down condition.
✔ Check the degasser for an error condition. Refer to the Reference Manual for the Agilent 1100 Series vacuum degasser.

Remote Timeout

A not-ready condition is still present on the remote input.

When an analysis is started, the system expects all not-ready conditions (e.g. a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable Causes

• Not-ready condition in one of the instruments connected to the remote line.
• Defective remote cable.
• Defective components in the instrument showing the not-ready condition.

Suggested Actions

✔ Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
✔ Exchange the remote cable.
✔ Check the instrument for defects (refer to the instrument’s reference documentation).
3 Troubleshooting and Test Functions

Synchronization Lost

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Probable Causes
- CAN cable disconnected.
- Defective CAN cable.
- Defective main board in another module.

Suggested Actions
- Ensure all the CAN cables are connected correctly.
- Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.
- Ensure all CAN cables are installed correctly.

Leak

A leak was detected in the detector.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the detector main board.

Probable Causes
- Loose fittings.
- Broken capillary.
- Leaking flow cell.

Suggested Actions
- Ensure all fittings are tight.
- Exchange defective capillaries.
- Exchange flow cell components.
Additional Information

Detector leak error may be caused by the Agilent 1100 sampler. In each sampler injection sequence, step #2 ejects the mobile phase stored in the metering head during the previous injection. This mobile phase is ejected through the short plastic tube connected to port #4 of the sampler switching valve. The output of port #4 is integrated into the sampler's contingency leak drain system, which eventually terminates in the leak pan of the bottom module of the stack - the detector. With normal injection volumes and run times, the output of port #4 is small, and evaporates right in the sampler leak pan. However, the output of port #4 is significant, and a substantial volume of ejected mobile phase reaches the detector leak pan.

There are two possible fixes. Select the one which is most convenient.

1. The waste drain plumbing orientation, shown in step 4 on page 26, eliminates the possibility of any leak drainage from above reaching the detector leak pan. The leak drain for the detector can be connected to the detector's leak drain fitting, and taken to waste separately.

2. If it is desired that the system has only one leak drain tube, then it's possible in increase the length of the small plastic tube which is connected to port #4 of the sampler switching valve. This tube can then be taken to waste separately. The tube which normally serves as the detector cell outlet tube can be used for this purpose.
Leak Sensor Open

The leak sensor in the detector has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable Causes

- Leak sensor not connected to the detector main board.
- Defective leak sensor.

Suggested Actions

✔ Ensure the leak sensor is connected correctly.
✔ Exchange the leak sensor.
Leak Sensor Short

The leak sensor in the detector has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable Causes
- Defective leak sensor.

Suggested Actions
- Exchange the leak sensor.
3 Troubleshooting and Test Functions

Compensation Sensor Open

The ambient-compensation sensor (NTC) on the detector main board in the detector has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the detector main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable Causes

• Defective detector main board.

Suggested Actions

✔ Exchange the detector main board.
Compensation Sensor Short

The ambient-compensation sensor (NTC) on the detector main board in the detector has failed (short circuit).

The resistance across the temperature compensation sensor (NTC) on the detector main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable Causes

• Defective detector main board.

Suggested Actions

✔ Exchange the detector main board.
3 Troubleshooting and Test Functions

Fan Failed

The cooling fan in the detector has failed.

The hall sensor on the fan shaft is used by the detector main board to monitor the fan speed. If the fan speed falls below two revolutions/second for more than five seconds, the error message is generated.

Probable Causes
• Fan cable disconnected.
• Defective fan.
• Defective detector main board.

Suggested Actions
✔ Ensure the fan is connected correctly.
✔ Exchange fan.
✔ Exchange the detector main board.
Open Cover

The top foam has been removed.

The sensor on the detector main board detects when the top foam is in place. If the foam is removed, the fan is switched off, and the error message is generated.

Probable Causes

- The top foam was removed during operation.
- Foam not activating the sensor.

Suggested Actions

✔ Replace the top foam.
✔ Exchange the foam.
The top foam has been removed.

The sensor on the detector main board detects when the top foam is in place. If the foam is removed while the lamps are on (or if an attempt is made to switch on the lamps with the foam removed), the lamps are switched off, and the error message is generated.

Probable Causes
- The top foam was removed during operation.
- Foam not activating the sensor.

Suggested Actions
✔ Replace the top foam.
✔ Exchange the foam.
Visible Lamp Current

The visible lamp current is missing.

The processor continually monitors the lamp current during operation. If the current falls below the lower current limit, the error message is generated.

Probable Causes
- Visible lamp disconnected.
- Defective visible lamp.
- Defective detector main board.
- Defective power supply.

Suggested Actions

✔ Ensure the visible lamp connector is seated firmly.
✔ Exchange the visible lamp.
✔ Exchange the detector main board.
✔ Exchange the power supply.

Visible Lamp Voltage

The visible lamp voltage is missing.

The processor continually monitors the voltage across the lamp during operation. If the lamp voltage falls below the lower limit, the error message is generated.

Probable Causes
- Defective detector main board.
- Defective power supply.

Suggested Actions

✔ Exchange the detector main board.
✔ Exchange the power supply.
Communication Error

An internal communication error between the main processor and the digital-signal processor has occurred.

Probable Causes

- Random communication error.
- Defective detector main board.

Suggested Actions

✔ Switch the detector off and on again at the power switch. If the error reoccurs, exchange the detector main board.
Calibration Values Invalid

The calibration values read from the spectrometer ROM are invalid.

After recalibration, the calibration values are stored in ROM. The processor periodically checks if the calibration data are valid. If the data are invalid or cannot be read from the spectrometer ROM, the error message is generated.

Probable Causes

- Defective detector main board.
- Defective optical unit.

Suggested Actions

✔ Exchange the detector main board.
✔ Exchange the optical unit.
Diode Current Leakage

When the detector is switched on, the processor checks the leakage current of each of the optical diodes. If the leakage current exceeds the upper limit, the error message is generated.

Probable Causes

• Defective optical unit.
• Defective detector main board.

Suggested Actions

✓ Exchange the optical unit.
✓ Defective detector main board.
Holmium Oxide Test Failed

The holmium oxide test in the detector has failed.

During the holmium test, the detector moves the holmium filter through the light path while monitoring the detector signal response. As the edge of the filter passes through the light path, the signal is interrupted. This is used to determine the position of the filter, and whether the filter is moving correctly. If the filter fails to move, the error message is generated.

Probable Causes

- Lamps switched off.
- Defective or dirty flow cell.
- Defective filter assembly.
- Defective achromat assembly.
- Defective optical unit.

Suggested Actions

✔ Ensure the lamps are switched on.
✔ Ensure the flow cell is inserted correctly, and is free from contamination (cell windows, buffers etc.).
✔ Exchange the filter assembly.
✔ Exchange the achromat assembly.
✔ Exchange the optical unit.

UV Lamp Current

The UV lamp current is missing.

The processor continually monitors the anode current drawn by the lamp during operation. If the anode current falls below the lower current limit, the error message is generated.

Probable Causes

- UV lamp disconnected.
- Defective UV lamp or non-Agilent lamp.
- Defective detector main board.
- Defective power supply.
3 Troubleshooting and Test Functions

Suggested Actions

✔ Ensure the UV lamp connector is seated firmly.
✔ Exchange the UV lamp.
✔ Exchange the detector main board.
✔ Exchange the power supply.

UV Lamp Voltage

The UV lamp anode voltage is missing.

The processor continually monitors the anode voltage across the lamp during operation. If the anode voltage falls below the lower limit, the error message is generated.

Probable Causes

• Defective UV lamp or non-Agilent lamp.
• Defective detector main board.
• Defective power supply.

Suggested Actions

✔ Exchange the UV lamp.
✔ Exchange the detector main board.
✔ Exchange the power supply.
UV Ignition Failed

The UV lamp failed to ignite.

The processor monitors the UV lamp current during the ignition cycle. If the lamp current does not rise above the lower limit within 2 – 5 seconds, the error message is generated.

Probable Causes

• Lamp not connected.
• Defective UV lamp or non-Agilent lamp.
• Defective detector main board.
• Defective power supply.

Suggested Actions

✔ Ensure the lamp is connected.
✔ Exchange the UV lamp.
✔ Exchange the detector main board.
✔ Exchange the power supply.

UV Heater Current

The UV lamp heater current is missing.

During UV lamp ignition, the processor monitors the heater current. If the current does not rise above the lower limit within one second, the error message is generated.

Probable Causes

• UV Lamp not connected.
• Ignition started without the top foam in place.
• Defective UV lamp or non-Agilent lamp.
• Defective detector main board.
• Defective power supply.

Suggested Actions

✔ Ensure the UV lamp is connected.
✔ Replace the top foam, and turn on the lamp.
3 Troubleshooting and Test Functions

✓ Exchange the UV lamp.
✓ Exchange the detector main board.
✓ Exchange the power supply.

New Messages with the G1315B and G1365B detectors

With the introduction of the G1315B DAD and the G1365B MWD a few new messages have been added to address the additional heating control for stabilization of the baseline in unstable environment.
Module Type Changed

At switch-on, the detector has recognized a new configuration. Only G1315B and G1365B detectors have built-in hardware for temperature control. The type of the module changed from A to B or vice versa because the hardware for the temperature control was either detected or not detected.

The parameter of the event determines the new module type:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Module Type</th>
<th>Temperature Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>G1315</td>
<td>no temperature hardware detected</td>
</tr>
<tr>
<td>1</td>
<td>G1315</td>
<td>temperature hardware detected</td>
</tr>
<tr>
<td>2</td>
<td>G1365</td>
<td>no temperature hardware detected</td>
</tr>
<tr>
<td>3</td>
<td>G1365</td>
<td>temperature hardware detected</td>
</tr>
</tbody>
</table>

Look at the product identifier to check if your detector is of type A (G1315A or G1365A) or B (G1315B or G1365B) and proceed accordingly.

Type A, Parameter 0 or 2

Probable Causes

• Main board has been exchanged

Suggested Actions

✔ Power cycle the detector

Type B, Parameter 0 or 2

Probable Causes

• Defective or missing heater connector

Suggested Actions

✔ Ensure the connector to the detector main board is seated firmly and power cycle the detector. At next switch-on you will get the same error message, but with parameter 1 or 3 because the temperature hardware is detected again (see below).

Type B, Parameter 1 or 3

Probable Causes

• Detector has recognized the hardware for temperature control. This is because the detector didn't find the temperature hardware at last switch-on.
3 Troubleshooting and Test Functions

Suggested Actions

✔ Power cycle the detector.
Illegal Value From Temperature Sensor Mounted On The Fan Assembly

This temperature sensor delivered a value outside the allowed range. The parameter of this event equals the measured temperature in 1/100 centigrade. As a result the temperature control is switched off.

Probable Causes

• The sensor is defect
• Detector is exposed to illegal ambient conditions.

Suggested Actions

✔ Ensure the connector to the detector main board is seated firmly.
✔ Verify that the ambient conditions are within the allowed range.
✔ Exchange temperature sensor assembly.
Illegal Value From „Air Inlet" Temperature Sensor

This temperature sensor (located on the detector main board) delivered a value outside the allowed range. The parameter of this event equals the measured temperature in 1/100 centigrade. As a result the temperature control is switched off.

Probable Causes

- The sensor is defect
- Detector is exposed to illegal ambient conditions.

Suggested Actions

✔ Verify that the ambient conditions are within the allowed range.
✔ Exchange detector main board.
Heater Failed

Every time the deuterium lamp or the tungsten lamp is switched on or off a heater self-test is performed. If the test fails an error event is created. As a result the temperature control is switched off.

Probable Causes

- Defective connector or cable.
- Defective heater.

Suggested Actions

✔ Ensure the connector to the detector main board is seated firmly.
✔ Exchange heater assembly.
Heater Power At Limit

The available power of the heater reached either the upper or lower limit. This event is sent only once per run. The parameter determines which limit has been hit:

0 means upper power limit hit (excessive ambient temperature drop).

1 means lower power limit hit (excessive ambient temperature increase).

Probable Causes

• Ambient conditions have changed too much during the run, so that optimum results may not be guaranteed.

Suggested Actions

✔ Verify that the reproducibility of your results is not affected

✔ Expose the detector to more stable ambient conditions.
Wavelength Recalibration

The detector uses the alpha (656.1 nm) and beta (486 nm) emission lines of the deuterium lamp for wavelength calibration. The sharp emission lines enable more accurate calibration than is possible with holmium oxide. When calibration is started, the 1-nm slit is moved into the light path automatically, and the gain is set to zero. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell. After calibration, the holmium oxide test (see Figure “Holmium Oxide Test” on page 86) provides verification of wavelength accuracy at three additional wavelengths. Wavelength calibration should be done after maintenance of the flow cell, lamp exchange, or after major repair, like processor board or optical unit exchange, see also “Replacing the Detector’s Firmware” on page 180.

![Wavelength Calibration](image)

Figure 20 Wavelength Calibration

Test Functions

Holmium Oxide Test

The built-in holmium oxide filter is used for verification of wavelength accuracy at three additional wavelengths. The test evaluates the results automatically, and provides a spectrum of the holmium oxide filter.
3 Troubleshooting and Test Functions

Intensity Test

The intensity test checks the lamp intensities (UV and visible lamps) over the complete spectral range. The test evaluates the results automatically, and provides an intensity spectrum.

Cell Test

The cell test compares the lamp intensities with and without flow cell installed. The intensity ratio is an indicator of the amount of light absorbed by the flow cell (e.g. contaminated or dirty cell windows).

Dark-Current Test

The dark-current test measures the leakage current from each optical diode. The test evaluates the results automatically, and provides a graphical output of the results.

Filter Test

The filter test checks the filter motor for correct movement, and checks the absorbance of the holmium oxide filter in order to determine whether the filter is dirty or contaminated.

Holmium Oxide Test

The holmium oxide test uses three characteristic absorbance maxima of the built-in holmium oxide filter to verify wavelength accuracy (see also “Wavelength Recalibration” on page 84). When the test is started, the 1-nm slit is moved into the light path automatically. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell.
Holmium Oxide Test Evaluation

The test is evaluated by the instrument, and the measured maxima are displayed automatically. The test fails if one or more of the maxima lies outside of the limits (see Figure 22).

Test Failed

Probable Causes

- Absorbing solvent or air bubble in flow cell.
- Incorrect calibration
- Dirty or contaminated flow cell.
3 Troubleshooting and Test Functions

- Dirty or contaminated optical components (achromat, windows).
- Old or non-Agilent lamp.

Suggested Actions

✔ Ensure the flow cell is filled with water.
✔ Recalibrate (see “Wavelength Recalibration” on page 84) and repeat the test.
✔ Run the cell test (see “Cell Test” on page 90). If the test fails, exchange the flow cell windows.
✔ Clean optical components with alcohol and lint-free cloth.
✔ Exchange the UV lamp.

Intensity Test

NOTE The test ist for the standard flow cells (10 mm and 6 mm pathlength) only. The nano-flow cells (80 nl and 500 nl) cannot be run with this test due to its low volume.

The intensity test measures the intensity of the deuterium and tungsten lamps over the full wavelength range (190 – 950 nm). Four spectral ranges are used to evaluate the intensity spectrum. The test is used to determine the performance of the lamps and optics (see also “Cell Test” on page 90). When the test is started, the 1-nm slit is moved into the light path automatically, and the gain is set to zero. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell. The shape of the intensity spectrum is primarily dependent on the lamp, grating, and diode array characteristics. Therefore, intensity spectra will differ slightly between instruments. Figure 23 shows a typical intensity test spectrum.
Figure 23 Intensity Test

Intensity Test Evaluation

The Agilent ChemStation evaluates four spectral ranges automatically, and displays the limits for each range, the measured intensity counts, and passed or failed for each spectral range (see Figure 24).

Figure 24 Intensity Test Results

Test Failed

Probable Causes

- Absorbing solvent or air bubble in flow cell.
- Dirty or contaminated flow cell.
- Dirty or contaminated optical components (achromat, windows).
- Old or non-Agilent lamp.
3 Troubleshooting and Test Functions

Suggested Actions

✔ Ensure the flow cell is filled with water, and free from air bubbles.

✔ Run the cell test (see “Cell Test” on page 90). If the test fails, exchange the flow cell windows.

✔ Clean optical components with alcohol and lint-free cloth.

✔ Exchange the lamp.

Cell Test

The cell test measures the intensity of the deuterium and tungsten lamps over the full wavelength range (190 – 950 nm), once with the flow cell installed, and once with the flow cell removed. The resulting intensity ratio is a measure of the amount of light absorbed by the flow cell. The test can be used to check for dirty or contaminated flow cell windows. When the test is started, the 1-nm slit is moved into the light path automatically, and the gain is set to zero. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell.

Cell Test Evaluation

The Agilent ChemStation calculates the intensity ratio automatically. The intensity ratio (typically between 0.5 and 0.7) is dependent on the degree of contamination of the flow cell windows, and on the type of flow cell used.

Test Failed (low ratio value)

Probable Causes

• Absorbing solvent or air bubble in flow cell.
Troubleshooting and Test Functions

- Dirty or contaminated flow cell.

 Suggested Actions

 ✔ Ensure the flow cell is filled with water, and free from air bubbles.

 ✔ Exchange the flow cell windows.

Dark-Current Test

The dark-current test measures the leakage current from each diode. The test is used to check for leaking diodes which may cause non-linearity at specific wavelengths. During the test, the slit assembly moves to the dark position, cutting off all light falling onto the diode array. Next, the leakage current from each diode is measured, and displayed graphically (see Figure 26). The leakage current (represented in *counts*) for each diode should fall within the limits (red bands) shown in the plot (see Figure 26).

![Dark-Current Test](image)

Figure 26 Dark-Current Test

Dark-Current Test Evaluation

![Dark-Current Test Results](image)

Figure 27 Dark-Current Test Results

Test Failed

Probable Causes
Troubleshooting and Test Functions

- Defective optical unit.

Suggested Actions

✔ Exchange the optical unit.
Filter Test

The filter test checks the correct operation of the filter assembly. When the test is started, the holmium oxide filter is moved into position. During filter movement, the absorbance signal is monitored. As the edge of the filter passes through the light path, an absorbance maximum is seen. Once the filter is in position, the absorbance maximum (of holmium oxide) is determined. Finally, the filter is moved out of the light path. During movement, an additional absorbance maximum is expected as the edge of the filter passes through the light path. The test passes successfully, if the two maxima resulting from the edge of the filter assembly (during filter movement) are seen, and the absorbance maximum of holmium oxide is within the limits.

Filter Test Evaluation

Test Failed

Probable Causes

• Filter assembly (lever and filter) not installed.
• Defective filter motor.

Suggested Actions

✔ Install the filter assembly.
✔ Exchange the filter motor.

Holmium Oxide Maximum out of Limits

Probable Causes

• Holmium oxide filter not installed.
• Dirty or contaminated filter.

Suggested Actions

✔ Install the holmium oxide filter.
✔ Exchange the holmium oxide filter.
4

Repairing the Detector

Introduction into Repairing the Detector 96
Overview of the Repairing of the Detector 99
Simple Repairs 101
Exchanging Internal Parts 138
Simple Repairs

The detector is designed for easy repair. The most frequent repairs such as lamp change and flow cell change can be done from the front of the detector with the detector in place in the system stack. These repairs are described in “Simple Repairs” on page 101.

Exchanging Internal Parts

Some repairs may require exchange of defective internal parts. Exchange of these parts requires removing the detector from the stack, removing the covers, and disassembling the detector. The security lever at the power input socket prevents that the detector cover is taken off when line power is still connected. These repairs are described in “Exchanging Internal Parts” on page 138.

WARNING

To prevent personal injury, the power cable must be removed from the instrument before opening the detector cover. Do not connect the power cable to the detector while the covers are removed.

WARNING

To prevent personal injury, be careful when getting in contact with sharp metal areas.

WARNING

When working with solvents please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.
Electronic boards and components are sensitive to electronic discharge (ESD). In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components (see “Using the ESD Strap” on page 98).

Eye damage may result from directly viewing the light produced by the deuterium lamp used in this product. Always turn the deuterium lamp off before removing it.

Cleaning the Detector

The detector case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and mild detergent. Do not use an excessively damp cloth allowing liquid to drip into the detector. Do not let liquid drip into the detector. It could cause shock hazard and it could damage the detector.

Using the ESD Strap

Electronic boards are sensitive to electronic discharge (ESD). In order to prevent damage, always use an ESD strap supplied in the standard accessory kit (see “Accessory Kit” on page 208) when handling electronic boards and components.

1 Unwrap the first two folds of the band and wrap the exposed adhesive side firmly around your wrist.

2 Unroll the rest of the band and peel the liner from the copper foil at the opposite end.

3 Attach the copper foil to a convenient and exposed electrical ground.
Overview of the Repairing of the Detector

NOTE
With the introduction of the G1315B/G1365B DAD/MWD some of the metal plates look different (no air openings) compared to the G1315A/G1365A DAD/MWD. The figures have changed for specific repairs only.

Figure 29 shows the main assemblies and their locations.
Simple Repairs

On the following pages repairs are described that can be carried out without opening the main cover.

Table 7 Simple Repairs

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Typical Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deuterium lamp or tungsten lamp exchange</td>
<td>If noise and/or drift exceeds your application limits or lamp does not ignite.</td>
<td>An intensity test should be performed after replacement.</td>
</tr>
</tbody>
</table>
Repairing the Detector

<table>
<thead>
<tr>
<th>Item</th>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow cell exchange</td>
<td>If application requires a different flow cell type.</td>
<td>A holmium or wavelength calibration test should be performed after replacement.</td>
</tr>
<tr>
<td>Flow cell parts</td>
<td>If leaking or if intensity drops due to contaminated flow cell windows.</td>
<td>A pressure tightness test should be done after repair.</td>
</tr>
<tr>
<td>Holmium oxide filter</td>
<td>If contaminated.</td>
<td>A holmium or wavelength calibration test should be performed after replacement.</td>
</tr>
<tr>
<td>Leak sensor drying</td>
<td>If leak has occurred.</td>
<td>Check for leaks.</td>
</tr>
<tr>
<td>Leak handling System replacement</td>
<td>If broken or corroded.</td>
<td>Check for leaks.</td>
</tr>
<tr>
<td>Coupling lens assembly cleaning or exchange</td>
<td>If light throughput is low due to contaminations.</td>
<td>An intensity test should be performed after replacement.</td>
</tr>
<tr>
<td>Cell support assembly</td>
<td>If light throughput is low due to contaminations.</td>
<td>An intensity test should be performed after replacement.</td>
</tr>
</tbody>
</table>

Exchanging a Lamp

When required

If noise or drift exceeds application limits or lamp does not ignite

Tools required

Screwdriver POZI 1 PT3

Parts required

- Longlife Deuterium lamp 2140-0813 (without black cover)
- Longlife Deuterium lamp 5181-1530 (with black cover)
- Deuterium lamp 2140-0590 (without black cover)
- Tungsten lamp G1103-60001
Preparations for this procedure:

- Turn the lamp(s) off.

CAUTION:

If the detector has been in use, the lamp may be hot. If so, wait five minutes until lamp cools off.

1. Press the release buttons and remove the front cover to have access to the lamp area.

2. Disconnect lamp from the connector and unscrew the lamp.

3. Remove the lamp. Do not touch the glass bulb with your fingers.
When replacing the vis-lamp, assure that the vis-lamp is inserted as shown (flat edge towards the deuterium lamp - opposite as in the figure).

Insert the lamp. Fix the screws and reconnect the lamp to connector.

Replace the front cover.
Exchanging a Flow Cell

When required
If an application needs a different type of flow cell or the flow cell
needs repair.

Tools required
Two 1/4 inch wrenches for capillary connections

Parts required
Standard flow cell, 10 mm, 13 µl, 120 bar, G1315-60012
Semi-micro flow cell, 6 mm, 5 µl, 120 bar, G1315-60011
High pressure flow cell, 6 mm, 1.7 µl, 400 bar, G1315-60015
Nano flow cell, refer to “Nano Flow Cell - Replacing or Cleaning” on page 122
4 Remove the flow cell by pressing the flow cell holder.

Note:
The label attached to the flow cell provides information on part number, path length and maximum pressure.

If you want to replace flow cell parts, see “Repairing the Standard or Semi-Micro Flow Cell” on page 108 or “Repairing the Standard or Semi-Micro Flow Cell” on page 108.
Repairing the Detector

5 Insert the flow cell into the cell compartment and close the cell door.

6 Reconnect the waste capillary and the cell inlet and the cell outlet tubing to the capillary holder.

Note:
To check for leaks, establish a flow and observe the flow cell (outside of the cell compartment) and all capillary connections.

Next steps:
• Perform a wavelength calibration or holmium test (see “Holmium Oxide Test” on page 86), to check the correct positioning of the flow cell.
• Replace the front cover.

Repairing the Standard or Semi-Micro Flow Cell

When required
If the flow cell needs repair due to leaks or contaminations (reduced light throughput)

Tools required
Two 1/4 inch wrenches for capillary connections
hexagonal key 4 mm
Tooth picks

Parts required
For parts, see “Standard Flow Cell” on page 186 and “Semi-Micro Flow Cell” on page 188
The gaskets used in the standard and semi-micro flow cell are different.

Preparations for this procedure:

- Turn off the flow.
- Remove the front cover.
- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.

1. Use a 4 mm hex key to unscrew the window assembly and gasket.
<table>
<thead>
<tr>
<th>Note:</th>
<th>2 Use a tooth pick to remove the quartz window from the window assembly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you want to replace the gasket only, continue with step 8. Do not mix the gasket #6 and # 7. They are different for standard and semi-mirco flow cell.</td>
<td></td>
</tr>
</tbody>
</table>

4 Repairing the Detector
Assemble the washers and the window assembly in correct order.

Correct orientation of spring washers [2] is required.
6 Press the Teflon® ring into the window assembly.

7 Press the window assembly onto the new or cleaned quartz window.
Repairing the High Pressure Flow Cell

When required
If the flow cell needs repair due to leaks or contaminations (reduced light throughput)

Tools required
Two 1/4 inch wrenches for capillary connections
Hexagonal key 4 mm
Tooth picks

Parts required
For parts see “High Pressure Flow Cell” on page 190
If you want to replace the gasket only, continue with step 8.

2 Use a tooth pick to remove the quartz window from the window assembly.

Preparations for this procedure:

- Turn off the flow.
- Remove the front cover.
- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.
Replacing Capillaries on a Standard Flow Cell

When required
If the capillary is blocked

Tools required
Two 1/4 inch wrenches for capillary connections
Wrench 4 mm for capillary connections
Screwdriver Pozi 1 PT3

Parts required
For parts see “Standard Flow Cell” on page 186

Preparations for this procedure:

• Turn off the flow.
• Remove the front cover.

1 Identify the inlet and outlet capillaries.
4 Repairing the Detector

- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.
Notes

The fittings at the flow cell body are special types for low dead volumes and not compatible with other fittings.

When retightening the fittings, make sure that they are carefully tightened (handtight plus 1/4 turn with a wrench). Otherwise damage of the flow cell body or blockage may result.

2
Then do a 1/4 turn
4 Repairing the Detector

3 To replace the inlet capillary, use a 4-mm wrench for the fitting.

4 Unscrew the cell body from the heat exchanger and the heat exchanger from the clamp unit.
5 Unscrew the fixing screw and unwrap the inlet capillary from the groove in the flow cell body.

6 Take the new inlet capillary and bend it 90° about 35 mm from its end.

7 Bend the capillary again by 90° as shown below.

8 Insert the capillary into the hole between fixing screw and the inlet fitting.

9 The capillary lays in the groove and should be tied around.

10 Insert the fixing screw, so that the capillary cannot leave the groove.
4 Repairing the Detector

the body (in the groove) 5 times.

11 Fix the flow cell body to the heat exchanger.

12 Screw Inlet capillary with heat
13 Fix the new heat exchanger to the clamp unit.

Next steps:
- Reconnect the capillaries, see “Exchanging a Flow Cell” on page 105.
- Perform a leak test.
- Insert the flow cell.
- Replace the front cover.
- Perform a wavelength calibration, see “Wavelength Recalibration” on page 84 or holmium test, see “Holmium Oxide Test” on page 86 to check the correct positioning of the flow cell.
Replacing Capillaries on a Semi-Micro and High Pressure Flow Cell

When required
If the capillary is blocked

Tools required
Two 1/4 inch wrenches for capillary connections
Wrench 4 mm for capillary connections
Screwdriver Pozi 1 PT3

Parts required
For parts see “Semi-Micro Flow Cell” on page 188

Preparations for this procedure:

- Turn off the flow.
- Remove the front cover.
- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.

1. Identify the inlet and outlet capillaries.

Inlet capillary

Outlet capillary
Notes

The fittings at the flow cell body are special types for low dead volumes and not compatible with other fittings.

When retightening the fittings, make sure that they are carefully tightened (handtight plus 1/4 turn with a wrench). Otherwise damage of the flow cell body or blockage may result.

2
Then do a 1/4 turn

Outlet capillary
Next steps:

- Reconnect the capillaries, see “Exchanging a Flow Cell” on page 105.
- Perform a leak test.
- Insert the flow cell.
- Replace the front cover.
- Perform a wavelength calibration, see “Wavelength Recalibration” on page 84 or holmium test, see “Holmium Oxide Test” on page 86 to check the correct positioning of the flow cell.
Nano Flow Cell - Replacing or Cleaning

When required
If parts are contaminated or leaky.

Tools required
Screwdriver POZI 1 PT3
Two 1/4 inch wrenches for capillary connections

Parts required
For parts identification refer to “Nano Flow Cells” on page 192 (80 nl and 500 nl).

NOTE
For details refer to the technical that comes with the nano-flow cell kit.

NOTE
The quartz block can be cleaned with alcohol. DO NOT touch the inlet and outlet windows at the quartz block.

1. Disconnect the capillaries from the capillary holder and remove the flow cell.
2. Unscrew the cell body from the holder.
3 Unscrew the capillaries from the flow cell. DO NOT use the adapter at this time!

4 Using for example a toothpick, press on the plastic part and slide the quartz body out of the cell housing.
9 Insert the flow cell capillaries and tighten them fingertight. Use the wrench and torque adapter as described on page 126 and tighten the fittings alternately.

10 Reassemble the flow cell body to the holder.
The cell body can be fitted in two positions to allow the capillaries routed upwards or downwards (depending on where the column is located). Route the capillaries directly column (inlet) and waste assembly (outlet).

NOTE With the instrument accessory kit comes a 4-mm wrench and with the Sealing Kit a special adapter. Both together work as a torque wrench with pre-defined torque (maximum allowed torque
for the cell fittings is 0.7 Nm). It can be used to tighten the capillary fittings at the flow cell body. The wrench has to be plugged into the adapter as shown in Figure 30.

Figure 30 Wrench plus Torque Adapter
Cleaning or Exchanging the Holmium Oxide Filter

<table>
<thead>
<tr>
<th>When required</th>
<th>If holmium oxide filter is contaminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools required</td>
<td>Screwdriver POZI 1 PT3</td>
</tr>
<tr>
<td></td>
<td>Screwdriver flat blade</td>
</tr>
<tr>
<td></td>
<td>Two 1/4 inch wrenches for capillary</td>
</tr>
<tr>
<td></td>
<td>connections</td>
</tr>
<tr>
<td></td>
<td>A pair of tweezers</td>
</tr>
</tbody>
</table>

| Parts required | Holmium oxide filter 79880-22711 |

NOTE
See also “Declaration of Conformity for HOX2 Filter” on page 310.

Preparations for this procedure:

- Turn off the flow.
- Remove the front cover.
- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.

2 If not already in this position, move the filter up.
Note:

Do not sc
Repairing the Detector

4 Repairing the Detector

r
a
t
ch

t
he

h
ol
mi
um

o
xi
de

f
il
t
.
T
he

h
ol
mi
um

120 1100 Series DAD and MWD Reference Manual
4 Repairing the Detector

oil and lint-free cloth.
5 Replace the flow cell cover and fix the six screws.

Next steps:
- Perform a holmium oxide test, see “Holmium Oxide Test” on page 86 to check the proper function of the holmium oxide filter.
- Insert the flow cell, see “Exchanging a Flow Cell” on page 105.
- Replace the front cover.
- Turn on the flow.
Correcting Leaks

When required: If a leakage has occurred in the flow cell area or at the heat exchanger or at the capillary connections.

Tools required:
- Tissue
- Two 1/4 inch wrenches for capillary connections

Parts required: None

1. Remove the front cover.
2. Use tissue to dry the leak sensor area and the leak pan.
3. Observe the capillary connections and the flow cell area for leaks and correct, if required.
4. Replace the front cover.

Replacing Leak Handling System Parts

When required: If the parts are corroded or broken.

Tools required: None

Parts required: Leak funnel 5061-3356
1. Remove the front cover.
2. Pull the leak funnel out of the leak funnel holder.
3. Pull out the leak funnel with the tubing.
4. Insert the leak funnel with the tubing in its position.
5. Insert the leak funnel into the leak funnel holder.
6. Replace the front cover.

Cleaning or Replacing Coupling Lens Assembly

When required
The coupling lens assembly is located between the tungsten and the deuterium lamp. It may be replaced when light transmission is reduced and a lamp exchange or window cleaning does not improve the light throughput.

Tools required
Screwdriver POZI 1
PT3 hexagonal key 1.5
4 Repairing the Detector

mm A pointed pair of pliers

Parts required

Coupling lens assembly G1103-68001

Preparations for this procedure:

• Turn off the lamp(s).

If the det
• If the detector was in use, the lamp may be hot. If so, wait five minutes until lamp cools off.
• Remove the front cover.
• Remove the front cover.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Carefully slide the lens assembly to the right into the deuterium lamp area by pushing it from the tungsten lamp side with the hex key.</td>
</tr>
<tr>
<td>4</td>
<td>The assembly may be disassembled using a pair of pliers to remove the retainer ring.</td>
</tr>
<tr>
<td>5</td>
<td>The lens may be cleaned or the complete assembly must be exchanged.</td>
</tr>
</tbody>
</table>
Next steps:

- Replace both lamps.
- Perform an intensity test to check the proper function.
- Replace the front cover.

Cleaning or Replacing Cell Support Window

When required

This window is located between the holmium oxide filter and the flow cell. It may be replaced when the transmission of light is reduced and a lamp exchange or a window cleaning does not improve the light throughput.

Tools required

- Screwdriver POZI 1 PT3
- Hexagonal key 1.5 mm
- Pointed pair of pliers

Parts required

- Cell support window 79880-28111
- Cell support window assembly G1315-65202

For others, see “Cell Support Assembly” on page 200
Insert the rebuilt or new lens assembly and slide it into its holder.

Preparations for this procedure are:

- Turn off the lamp(s).

 If the detector was in use, the lamp may be hot. If so, wait 5 minutes until lamp cools.

- Remove the front cover.
- Remove the flow cell, see “Exchanging a Flow Cell” on page 105.

1 Unscrew the six screws and remove the flow cell cover.
2. If not already in this position, move the holmium oxide filter down.

3. Use the 1.5-mm hex key to loosen the setscrew that secures the cell support assembly.

4. Carefully slide the assembly to the right into the flow cell compartment by pushing it from the holmium oxide filter side.

5. Remove the cell support assembly completely.
Exchanging Internal Parts

6. The assembly may be disassembled using a pair of pliers to remove the retainer ring. The window may be cleaned or the complete assembly must be exchanged.

7. Insert the rebuilt or new assembly and slide it in until it is stopped by the filter lever.

8. Leave slight clearance for movement of the filter lever between both, the lens assembly and the filter lever, and fix the setscrew.

Next steps:
- Perform a filter test to check the proper function.
- Replace the flow cell cover, see “Cleaning or Exchanging the Holmium Oxide Filter” on page 127.
- Replace both lamps.
- Replace the front cover.

WARNING

The following procedures require opening the main cover of the detector. Always ensure the detector is disconnected from the line power when the main cover is removed. The security lever at the power input socket prevents that the detector cover is taken off when line power is still connected.
To disconnect the detector from line, unplug the power cord. The power supply still uses some power, even if the switch on the front panel is turned off.

To prevent personal injury, be careful when getting in contact with sharp metal areas.

When working with solvents please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

NOTE The electronics of the detector will not allow operation of the detector when the top cover and the top foam are removed. A safety light switch on the main board will inhibit the operation of the fan immediately. Voltages for the other electronic components will be turned off after 30 seconds. The status lamp will lit red and an error will be logged into the logbook of the user interface. Always operate the detector with the top covers in place.

CAUTION Electronic boards and components are sensitive to electronic discharge (ESD). In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components, see “Using the ESD Strap” on page 98.

WARNING Eye damage may result from directly viewing the light produced by the deuterium lamp used in this product. Always turn off the deuterium lamp before removing the deuterium lamp.

NOTE With the introduction of the G1315B/G1365B DAD/MWD some of the metal plates look different (no air openings) compared to the G1315A/G1365A DAD/MWD. The figures have changed for specific repairs only.
Removing the Top Cover and Foam

When required For all repairs inside the detector
Tools required Screwdriver POZI 1 PT3
Screwdriver
Parts required Depends on the work inside and the following procedures

Preparations for this procedure:
• Turn off the detector.
• Disconnect the power cable.
• Disconnect capillaries.
• Remove detector from stack and place it on the working bench.

2 interface board. Place the board on the ESD kit.

Install the ESD strap. If installed, unscrew and remove the
4 Lift the cover up and slide it towards the rear.
Exchanging the Detector Main Board

When required
If detector main board is defective or for repair on other assemblies

Tools required
Screwdriver POZI 1 PT3
Hexagonal wrenches 5 mm, 7 mm and 15 mm

Parts required
Detector main board (DAM) G1315-69540 (exchange assembly) for G1315A/B DAD
Detector main board (MWM) G1365-69540 (exchange assembly) for G1365A/B MWD

Note:
Do not connect a power plug to the detector module after removing the top covers.
A safety light switch on the main board will turn off fan (immediately) and electronics (after 30 s) to avoid the operation with removed covers. An error will be generated (status lamp will light red) and the logbook will show an error message.
4 Repairing the Detector

1 Turn off the lamp.

2 Switch off the module, and disconnect the cables.

3 Remove module from stack and place it on the working bench.

4 Remove the front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.

5 Use a 5-mm and 7-mm wrench to unscrew the REMOTE and the GPIB connector and a 15-mm wrench to unscrew the nuts of the ANALOG connectors.

6 Disconnect all connectors from the detector main board.

When removing connectors, counter-hold with one hand on connector J13.
Since board version -66540, the external memory slots (SIMM) have been removed. The 1 MB RAM is now on-board and not upgradeable (not required for any applications).

7 Remove the detector main board. Place the board on the ESD kit.

8 In most cases the RFI spring plate remains on the interface connectors of the board. Carefully remove the spring plate and place it back into its position in the instrument before installing a new board.

9 On the new board check the switch setting of address switch S1, see “Setting the 8-bit Configuration Switch” on page 261.

An incorrect switch setting (for example, TEST/BOOT) may cause the module to turn in a basic mode (yellow or red flashing status light). In such a case turn off the module, reset the address switches, and turn on the module again.

10 Install the new detector main board and reconnect the connectors. Assure that the board is fitted correctly into the board recess in the rear panel.
11 Refit the screws at the REMOTE and GPIB connectors and the nuts of the ANALOG connectors.

12 Reinstall the top foam section, top cover and front cover, see “Replacing the Foam and the Top Cover” on page 175.

13 Replace detector into the stack and reconnect the cables.

NOTE If a new detector main board is installed, update the serial number information of the detector in the user interface, see procedure below.

14 Check the firmware revision of the module. If the firmware revision is older than the current firmware revision of the module, update the firmware using the standard firmware update procedure, see “Replacing the Detector’s Firmware” on page 180.

NOTE The G1315B DAD and the G1365B MWD require firmware revision 4.x or above (main and resident).

Entering the Serial Number using the Control Module

1 Connect the control module to the detector. Turn on the detector.

2 In the control module, press System (F5), then Records (F4). Using the up/down arrows, make sure that the detector is highlighted.

3 Press FW Update (F5). Now, press the m key. This will display a box which says Update Enter Serial#.

4 Press Enter. This will display the box labeled Serial#.

5 Alphabetic characters and numbers are created using the up and down arrows. In the box labeled Serial#, enter the 10-character serial number for the detector. When the 10-character serial number is entered, press Enter to highlight the complete serial number. Then, press Done (F6).

NOTE For firmware revisions below A.02.00 it is important never to press Done if the Serial# box is blank. In this case, the module can no longer be recognized by either the control module or the Agilent ChemStation. The main board must then be replaced.

6 Turn the detector off, then on again. The Records screen should display the correct serial number for this module.
If an Agilent ChemStation is also connected, restart the Agilent ChemStation now as well.

Entering the Serial Number using the Agilent ChemStation

Module serial numbers are entered by typing specific commands in the command line at the bottom of the main user interface screen.

1. To enter a module serial number, type the following command in the command line (depends on the detector type, either DAD or MWD):

   ```
   print sendmodule$(ldad, "ser YYYYYYYYY")
   print sendmodule$(lmwd, "ser YYYYYYYYY")
   ```

 Where:

 YYYYYYYYYY is the 10-character serial number of the module in question.

 NOTE

 The first two characters are letters, which should be capitalized.

 The reply line will respond with RA 0000 SER followed by the module serial number you just entered.

2. Turn off the detector, then on again. Then, restart the Agilent ChemStation. If the serial number you have just entered is different than the original module serial number, you will be given the opportunity to edit the configure 1100 access screen during the restart of the Agilent ChemStation.

3. After start up, the serial number you have just entered can be seen under the Instrument menu of the main user interface screen. The serial number of the detector can also be seen by typing the following command into the command line (depends on the detector type, either DAD or MWD):

   ```
   print sendmodule$ (ldad, "ser?")
   print sendmodule$ (lmwd, "ser?")
   ```

 The reply line will give the module serial number.

Exchanging the Fan (G1315A/G1365A)

Use this procedure for the G1315A/G1365A only. For G1315B/G1365B detectors refer to “Replacing Fan Parts (G1315B/G1365B)” on page 150.
4 Repairing the Detector

When required If the fan is defective or noisy

Tools required Screwdriver POZI 1 PT3

Parts required Fan assembly 3160-1016

Preparations for this procedure:

- Turn off the lamp.
- Switch off the detector, and disconnect the cables and acpillaries.
- Remove detector from stack and place it on the working bench.
- Remove front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.

The fan must be installed in the correct orientation (see arrow on the fan) to ensure optimum cooling and operation of the detector. The direction of air flow is from the front towards the rear.

The figure below shows the required air flow direction.
Insert the fan assembly into its location and
Reconnect the connector to the main board (fan
J16), see figure

Next steps:
- Reinstall
 the top foam
 section,
 top cover and front
 cover, see
 “Replacing
 the Foam
 and the
 Top
 Cover” on
 page 175.
- Replace
 the
detector
 into the
 stack.
- Reconnect
cables,
capillaries
and turn
on
detector

Replacing Fan Parts (G1315B/G1365B)

NOTE
With the introduction of the G1315B/G1365B DAD/MWD a heater and a temperature
sensor was added to the standard fan assembly. Also the air flow direction is reversed
(now: rear to front). Use this procedure for the the G1315B/G1365B only. For
G1315A/G1365A detectors refer to “Exchanging the Fan (G1315A/G1365A)” on page 148.

When required
If the fan is defective or noisy, if the temperature sensor or the heater fails

Tools required
Screwdriver POZI 1 PT3, a pair of pliers

Parts required
Fan assembly 3160-1016,
Temperature sensor assembly G1315-60000,
Heater assembly G1315-60003
Preparations for this procedure:

- Turn off the lamp.
- Switch off the detector, and disconnect the cables and capillaries.
- Remove detector from stack and place it on the working bench.
- Remove front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.

1 Disconnect the connectors from the main board; fan (J16), temperature sensor (J18) and heater (J17) and pull the fan assembly out of its location.
The heater and temperature sensor assemblies are clipped into the fan assembly. In case the temperature sensor or the heater assembly fails, they can be unclipped separately from the fan assembly.

If the fan is defective, unclip both, the temperature sensor assembly and the heater assembly from the fan as described in the next steps.

2 To unclip the heater from the fan, use a pair of pliers, squeeze the clips and push them through the hole. Repeat this with the three remaining clips.

3 If required, remove the sensor out of its holder.

4 To unclip the sensor holder from the fan, pull it carefully from its position pushing into the direction the arrow points to.
The figure below shows the required air flow direction.

AIRFLOW

G1315/65A

G1315/65B

7 Position the heater assembly as shown and clip the heater onto the fan. The cables should be oriented towards the left corner.

8 Insert the fan assembly into its location.

The fan must be installed in the correct orientation (see arrow on the fan) to ensure optimum cooling and operation of the detector. The direction of air flow is from the rear towards the front (see figure on next page).
Removing the Optical Unit (G1315A/G1365A)

NOTE Use this procedure for the G1315A/G1365A only. For G1315B/G1365B detectors refer to “Removing the Optical Unit (G1315B/G1365B)” on page 156.

When required For all repairs inside the optical unit
Tools required Screwdriver POZI 1 PT3
Parts required Optical unit G1315-69002 (exchange assembly)
or
 Individual parts depending on the following procedures

Next Steps:
- Reinstall the top foam section, top cover and front cover, see “Replacing the Foam and the Top Cover” on page 175.
- Turn on the detector and prove, that the fan rotates smoothly without any scraping noise. Otherwise repeat step 5 and step 6 on page 152.
- Replace the detector into the stack.
- Reconnect cables, capillaries and turn on detector.
Repairing the Detector

Use this procedure for the G1315A/G1365A only.

1. Turn off the lamp.
2. Switch off detector, and disconnect power cable.
3. Remove detector from stack and place it on working bench.
4. Remove front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.
5. Remove both lamps from the optical unit, see “Exchanging a Lamp” on page 102 (G1315A/G1365A only!).
6. Remove flow cell, see “Exchanging a Flow Cell” on page 105.
7. Remove flow cell cover, see “Cleaning or Exchanging the Holmium Oxide Filter” on page 127 (G1315A/G1365A only!).
Removing the Optical Unit (G1315B/G1365B)

When required

For all repairs inside the optical unit

Tools required

Screwdriver POZI 1 PT3

Parts required

Optical unit G1315-69002 (exchange assembly)

or

Individual parts depending on the following procedures

10. Remove the two rubber shock absorbers.

11. Disconnect the SCI cable (J23) and the holmium oxide filter motor (J19) from the detector main board.

12. Remove the optical unit from the instrument holding the one hand at back of the heat sink.
4 Repairing the Detector
With the introduction of the G1315B/G1365B DAD/MWD the appearance of the z-plane (front metal plane) has been changed (no holes any more) and an isolation seal between the optical unit and the z-plane. Therefore, some of the figures may still show the old appearance of the G1315A/G1365A. For G1315A/G1365A detectors refer to “Removing the Optical Unit (G1315A/G1365A)” on page 154.

Preparations for this procedure:

- Turn off the lamp.
- Switch off detector, and disconnect power cable.
- Remove detector from stack and place it on working bench.
- Remove front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.
Exchanging the Source Lens (Achromat) Assembly

When required
The source lens (achromat) assembly might be cleaned or replaced when the transmission of light is reduced and a lamp exchange or new spectro windows do not improve the light throughput.

Tools required
- Screwdriver POZI 1
- PT3 hexagonal key 1.5 mm
- A pointed pair of pliers

Parts required
- Source lens (achromat) assembly G1315-65201 (includes filter lever G1315-45001)
NOTE

If the filter motor was removed, the filter lever should not be reused. Always use a new filter lever to assure correct fit on the filter motor shaft.

Preparations for this procedure:

- Turn off the lamp.
- Switch off detector and disconnect the power cable.
- Remove detector from stack and place it on the working bench.
- Remove the front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.
- Remove the optical unit, see “Removing the Optical Unit (G1315A/G1365A)” on page 154 or “Removing the Optical Unit (G1315B/G1365B)” on page 156.

1 Place the optical unit on your bench.
2 Pull the filter motor off the shaft. Keep the spring and the lever fixture in a safe place. Remove the filter lever on the other side.

3 Use the 1.5-mm hexagonal key to loosen the setscrew that secures the source lens assembly.

4 Use the 1.5-mm hexagonal key to loosen the setscrew that secures the cell support assembly.

5 Carefully slide the assembly to the right by pushing it from the deuterium lamp side with a hexagonal wrench.
6 Remove the achromat assembly.

7 Use a metal blade (12-mm width, 1-mm thick) to unscrew the lens achromatic.

8 Remove the spring and the spectro window from the holder.

9 Clean (with alcohol) and

11 Replace the achromat assembly.
lint-free cloth) or replace the spectrowindow.

Do not clean the achromatic lens with any liquid. To clean use dry air only.

10 Replace all parts into the holder and tighten the lens.
12 Before installing the filter motor, press the filter lever in from the other side.
Next steps:

- Check that the filter lever is moveable.
- Reinstall the optical unit, see “Installing the Optical Unit (G1315A/G1365A)” on page 171 or “Removing the Optical Unit (G1315B/G1365B)” on page 156.
- Reinstall the flow cell, see “Exchanging a Flow Cell” on page 105.
Repairing the Detector

- Reinstall the front cover, top cover and top foam section, see “Exchanging the Detector Main Board” on page 143.
- Replace detector into the stack.
- Reconnect the cables and turn on the detector.

Replacing the Holmium Oxide Filter Motor

When required: If defective
Tools required: Screwdriver POZI 1 PT3
hexagonal key 3 mm
Parts required: Filter motor assembly G1315-68700 (includes filter lever G1315-45001 and spring 1460-1510)

For others see “Holmium Oxide Filter” on page 197

NOTE: If the filter motor was removed, the filter lever should not be reused. Always use a new filter lever to assure correct fit on the filter motor shaft.

Preparations for this procedure:

- Turn off the lamp.
- Switch off the detector, and disconnect the power cable.
- Remove detector from stack and place it on working bench.
- Remove front cover, top cover and top foam

Place the optical unit on your bench.
section, see “Removing the Top Cover and Foam” on page 140.
- Remove optical unit, see “Removing the Optical Unit (G1315A/G1365A)” on page 154 or “Removing the Optical Unit (G1315B/G1365B)” on page 156.
4 While counter-holding the filter lever, press the filter motor onto the filter shaft until it clicks into the final position.
Exchanging the Power Supply

When required
If defective

Tools required
- Screwdriver POZI 1 PT3
- Wrench 1/4 inch
- Wrench 5 mm
- Wrench 7 mm

Parts required
- Power supply 0950-2528

The repair level of the power supply assembly is exchanging the complete assembly. No serviceable parts are inside.

1. Turn off the lamp.
2. Switch off the detector, and disconnect the cables.
3. Remove the detector from the stack and place it on the working bench.
4. Remove the front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.
5. Remove the detector main board, see “Exchanging the Detector Main Board” on page 143.
6. Remove the fan assembly, see “Exchanging the Fan (G1315A/G1365A)” on page 148 or “Replacing Fan Parts (G1315B/G1365B)” on page 150.
7. Remove the optical unit, see “Removing the Optical Unit (G1315A/G1365A)” on page 154 or “Removing the Optical Unit (G1315B/G1365B)” on page 156.
4 Repairing the Detector

7 Press down the power switch light pipe to remove it from the coupler.

8 Remove the power switch light pipe from the coupler.
Re-use the coupler.

The repair level of the power supply assembly is exchange of the complete assembly. No serviceable parts inside.

9 Insert the power supply into its location and fix it with the screws at the rear panel.

10 Press down and clip in the power switch light pipe into the power supply.
5 Carefully remove the bottom foam part by sliding it out towards the rear.

11 Reinstall bottom foam part. Slide it in underneath the leak drain.

Next steps:
• Reinstall process see “Exchanging the Detector Board” on page 143.
• Reinstall assembly see “Exchange Fan (G13154 & G13155)” on page 160.
• Reinstall Parts
Exchanging the Leak Sensor

When required
If defective

Tools required
Screwdriver POZI 1 PT3

Parts required
Leak sensor assembly 5061-3356

WARNING
Do not switch on the detector when the cover is removed.
Electronic boards and components are sensitive to electronic discharge (ESD). In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components, see “Using the ESD Strap” on page 98.

1. Turn off the lamp.
2. Switch off the detector and disconnect the cables.
3. Remove detector from stack and place it on the working bench.
4. Remove the front cover, top cover and top foam section, see “Removing the Top Cover and Foam” on page 140.
5. Remove the optical unit, see “Removing the Optical Unit (G1315A/G1365A)” on page 154 or “Removing the Optical Unit (G1315B/G1365B)” on page 156.
6. Disconnect the leak sensor cable from the detector main board (J21).

CAUTION

NOTE

On the G1315B DAD and G1365B MWD the leak sensor can be pulled out without the removing the leak pan (the next steps describe the procedure for the G1315A/G1365A).

12. Remove the leak pan from the cabinet bottom.
Replace the leak sensor assembly into the leak pan.
16 Replace the leak pan into the cabinet bottom.
Replacing Status Light Pipe

When required If part was broken or removed

Tools required Screwdriver POZI 1 PT3

Parts required Status light pipe 5041-8384

Preparations for this procedure:

- Remove the front cover and top cover, see “Removing the Top Cover and Foam” on page 140.

Next steps:

- Replace the top cover, see “Replacing the Foam and the Top Cover” on page 175.
- Replace the detector into the stack and reconnect the cables and capillaries.
- Turn on the detector.

Installing the Optical Unit (G1315A/G1365A)

When required When repairs have been completed

Tools required Screwdriver POZI 1 PT3

NOTE

Use this procedure for the the G1315A/G1365A only. For G1315B/G1365B detectors refer to “Installing the Optical Unit (G1315B/G1365B)” on page 173
The fan must be installed in the correct orientation to ensure correct cooling and operation of the detector, see “Exchanging the Fan (G1315A/G1365A)” on page 148.

CAUTION

Preparations for this procedure:

- The power supply, the fan and the processor board are already installed.

Check that the shock absorbers are properly attached.
4 Replace the two rubber shock absorbers and reconnect the ground connector.
If a new optical is installed, perform a “Wavelength Recalibration” on page 84 to add the recalibration parameters into the detector main board’s memory after turning on the detector.

Installing the Optical Unit (G1315B/G1365B)

When required When repairs have been completed
Tools required Screwdriver POZI 1 PT3

NOTE Use this procedure for the G1315B/G1365B only. For G1315A/G1365A detectors refer to “Installing the Optical Unit (G1315A/G1365A)” on page 171.

CAUTION The fan must be installed in the correct orientation to ensure correct cooling and operation of the detector, see “Replacing Fan Parts (G1315B/G1365B)” on page 150.

Preparations for this procedure:

- The power supply, the fan and the processor board are already installed.
If a new optical is installed, perform a “Wavelength Recalibration” on page 84 to add the recalibration parameters into the detector main board's memory after turning on the detector.

Replacing the Foam and the Top Cover

When required When all repairs have been completed
4 Repairing the Detector

Tools required
Screwdriver POZI 1 PT3

Prerequisites
The detector is open and other procedures have been carried out

Preparations for this procedure:
• All the work within the module should be completed.
2. Insert the foam and make sure that the foam is installed correctly.

3. Press the lamp cables into the foam channel and reconnect the lamp connectors to the front panel.

4. Reconnect the lamps.

5. Slide the top plate towards the rear and fix the top plate screws.

Ensure correct fit with Z-plane
4 Repairing the Detector

6 Replace the cover.

7 If required, insert the interface board and fix the screws.

8 Replace waste funnel assembly and the front panel.

Next steps:
- Replace the detector into the stack.
- Reconnect the hydraulic connections
- Reconnect the power cable and turn on the detector.
Assembling the Main Cover

When required: If cover is broken
Tools required: None
Parts required: Plastics kit 5062-8582 (includes base, top, left and right)

The plastics kit contains all parts, but it is not assembled.

WARNING
In case you insert the left or right side in the opposite position, you may not be able to remove the side from the top part.

3 Replace the detector into the stack and reconnect the cables and capillaries.
4 Turn on the detector.
Replacing the Interface Board

When required For all repairs inside the detector or for installation of the board

Part required Interface board (BCD) G1351-68701 with external contacts and BCD outputs, see “BCD Board” on page 253
Interface board (LAN) see “LAN Communication Interface Board” on page 255.

Tools required None
Replacing the Detector’s Firmware

The installation of new firmware is required:

- if new version solves problems of currently installed version, or
- if after exchange of the detector main board (DAM or MWM) the version on board is older than previous installed one.

To upgrade the detector’s firmware the following steps have to be performed:

1. Load the firmware into the detector, see help system of your user interface.

 NOTE

 The G1315B DAD and the G1365B MWD require firmware revision 4.x or above (main and resident).

2. Perform a “Wavelength Recalibration” on page 84 to add the recalibration parameters into the board’s memory.

 NOTE

 The wavelength recalibration should be performed after at least 10 minutes of warm-up time of the lamp.

3. If detector main board was replaced, reenter the serial number information of the module through the user interface, see “Entering the Serial Number using the Control Module” on page 146 or “Entering the Serial Number using the Agilent ChemStation” on page 147.

Next steps:

- Remove the ESD strap.
- Reinstall the module into the stack.
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Overview of Main Assemblies</th>
<th>182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Unit Assembly</td>
<td>184</td>
</tr>
<tr>
<td>Standard Flow Cell</td>
<td>186</td>
</tr>
<tr>
<td>Semi-Micro Flow Cell</td>
<td>188</td>
</tr>
<tr>
<td>High Pressure Flow Cell</td>
<td>190</td>
</tr>
<tr>
<td>Nano Flow Cells</td>
<td>192</td>
</tr>
<tr>
<td>Fan Assembly Parts</td>
<td>196</td>
</tr>
<tr>
<td>Holmium Oxide Filter</td>
<td>197</td>
</tr>
<tr>
<td>Coupling Lens Assembly</td>
<td>198</td>
</tr>
<tr>
<td>Source Lens (Achromat) Assembly</td>
<td>199</td>
</tr>
<tr>
<td>Cell Support Assembly</td>
<td>200</td>
</tr>
<tr>
<td>Control Module</td>
<td>201</td>
</tr>
<tr>
<td>Sheet Metal Kit (G1315A/G1365A)</td>
<td>202</td>
</tr>
<tr>
<td>Sheet Metal Kit (G1315B/G1365B)</td>
<td>203</td>
</tr>
<tr>
<td>Plastic Parts</td>
<td>204</td>
</tr>
<tr>
<td>Foam Parts</td>
<td>205</td>
</tr>
<tr>
<td>Power and Status Light Pipes</td>
<td>206</td>
</tr>
<tr>
<td>Leak Parts</td>
<td>207</td>
</tr>
<tr>
<td>Accessory Kit</td>
<td>208</td>
</tr>
<tr>
<td>Cable Overview</td>
<td>210</td>
</tr>
<tr>
<td>RS-232 Cable Kit</td>
<td>225</td>
</tr>
<tr>
<td>LAN Cables</td>
<td>226</td>
</tr>
</tbody>
</table>
Overview of Main Assemblies

Table 8 Main Assemblies

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main board DAM for G1315A/B DAD (exchange assembly)</td>
<td>G1315-69540</td>
</tr>
<tr>
<td></td>
<td>Identifying Parts and Materials</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Main board DAM for G1365A/B MWD (exchange assembly)</td>
<td>G1365-69540</td>
</tr>
<tr>
<td></td>
<td>Hexagonal nut for GPIB connector</td>
<td>0380-0643</td>
</tr>
<tr>
<td></td>
<td>Hexagonal nut for RS-232C connector</td>
<td>1251-7788</td>
</tr>
<tr>
<td></td>
<td>Nut for analog connector</td>
<td>2940-0256</td>
</tr>
<tr>
<td></td>
<td>Washer for analog connector</td>
<td>2190-0699</td>
</tr>
<tr>
<td></td>
<td>Cable CAN to Agilent 1100 Series modules</td>
<td>5181-1516</td>
</tr>
<tr>
<td>2</td>
<td>Power supply, for power and status light parts see page 206</td>
<td>0950-2528</td>
</tr>
<tr>
<td>3</td>
<td>Interface board BCD (BCD/external contacts)</td>
<td>G1351-68701</td>
</tr>
<tr>
<td></td>
<td>Fuse for BCD board, 250 mA (total of 4 are on the board)</td>
<td>2110-0004</td>
</tr>
<tr>
<td></td>
<td>LAN Communication Interface Board (G1369A)</td>
<td>G1369-60001</td>
</tr>
<tr>
<td>4</td>
<td>Fan assembly, for G1315B/G1365B heater and sensor see page 196</td>
<td>3160-1016</td>
</tr>
<tr>
<td>5</td>
<td>Optical unit (exchange assembly), for additional optical unit parts, see page 184</td>
<td>G1315-69002</td>
</tr>
<tr>
<td>6</td>
<td>Longlife Deuterium lamp without counter (no mercury) (without black cover)</td>
<td>2140-0813</td>
</tr>
<tr>
<td></td>
<td>Longlife Deuterium lamp without counter (no mercury) (with black cover)</td>
<td>5181-1530</td>
</tr>
<tr>
<td></td>
<td>Deuterium lamp without counter (no mercury) (without black cover)</td>
<td>2140-0590</td>
</tr>
<tr>
<td>7</td>
<td>Tungsten lamp</td>
<td>G1103-60001</td>
</tr>
<tr>
<td>8</td>
<td>For details see page 186 for standard flow cell, page 188 for semi-micro flow cell, or page 190 for high-pressure flow cell</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Leak sensor assembly</td>
<td>5061-3356</td>
</tr>
<tr>
<td>10</td>
<td>Leak handling parts, see page 207</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Front cover and plastic parts (housing), see page 204</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sheet metal parts, see page 202</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Foam parts, see page 205</td>
<td></td>
</tr>
</tbody>
</table>
Optical Unit Assembly

Table 9 Optical Unit Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optical unit (exchange assembly)</td>
<td>G1315-69002</td>
</tr>
<tr>
<td>2</td>
<td>Semi-flow cell, 6 mm, 5 µl, maximum pressure 120 bar, see page 186</td>
<td>G1315-60011</td>
</tr>
<tr>
<td>2</td>
<td>Standard flow cell, 10 mm, 13 µl, maximum pressure 120 bar, see page 186</td>
<td>G1315-60012</td>
</tr>
<tr>
<td>2</td>
<td>High Pressure flow cell, 6 mm 1.7 µl, maximum pressure 400 bar, see page 190</td>
<td>G1315-60015</td>
</tr>
<tr>
<td>3</td>
<td>Longlife Deuterium lamp without counter (no mercury) (without black cover)</td>
<td>2140-0813</td>
</tr>
<tr>
<td></td>
<td>Longlife Deuterium lamp without counter (no mercury) (with black cover)</td>
<td>5181-1530</td>
</tr>
<tr>
<td></td>
<td>Deuterium lamp without counter (no mercury) (without black cover)</td>
<td>2140-0590</td>
</tr>
<tr>
<td>4</td>
<td>Tungsten lamp</td>
<td>G1103-60001</td>
</tr>
<tr>
<td>5</td>
<td>Inlet capillary, 380 mm lg, 0.17 mm i.d., 0.6 mm o.d., for details see page 208</td>
<td>G1315-87311</td>
</tr>
<tr>
<td></td>
<td>Zero dead volume fitting</td>
<td>0100-0900</td>
</tr>
<tr>
<td>6</td>
<td>Cable SCI - DAM</td>
<td>G1315-61604</td>
</tr>
<tr>
<td>7</td>
<td>Damping kit, includes 6 bumpers</td>
<td>G1315-68706</td>
</tr>
<tr>
<td>8</td>
<td>Flow cell door (seal included)</td>
<td>G1315-68707</td>
</tr>
<tr>
<td></td>
<td>Screws M3 for flow cell door (6 ×)</td>
<td>5022-2112</td>
</tr>
<tr>
<td>9</td>
<td>Plug hole for lamp housing</td>
<td>6960-0002</td>
</tr>
<tr>
<td>10, 11, 12</td>
<td>Holmium oxide filter parts, see page 197</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Spring, for other holmium oxide filter parts, see page 197</td>
<td>1460-1510</td>
</tr>
<tr>
<td></td>
<td>Identifying Parts and Materials</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Coupling lens assembly, for other coupling lens assembly parts, see page 198</td>
<td>G1103-68001</td>
</tr>
<tr>
<td>15</td>
<td>Source lens (achromat) assembly, for other source lens assembly parts, see page 199</td>
<td>G1315-65201</td>
</tr>
<tr>
<td>16</td>
<td>Cell support assembly, for other cell support assembly parts, see page 200</td>
<td>G1315-65202</td>
</tr>
<tr>
<td>17</td>
<td>Sealing for G1315B/G1365B</td>
<td>G1315-47103</td>
</tr>
</tbody>
</table>
Standard Flow Cell

Table 10 Standard Flow Cell Parts
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard flow cell assembly, 10 mm, 13 μl, maximum pressure 120 bar</td>
<td>G1315-60012</td>
</tr>
<tr>
<td>1</td>
<td>Window screw</td>
<td>79883-22402</td>
</tr>
<tr>
<td>2</td>
<td>Spring washers, pack of 10</td>
<td>5062-8553</td>
</tr>
<tr>
<td>3</td>
<td>Compression washer</td>
<td>79883-28801</td>
</tr>
<tr>
<td>4</td>
<td>Window holder</td>
<td>79883-22301</td>
</tr>
<tr>
<td>5</td>
<td>Quartz window</td>
<td>1000-0488</td>
</tr>
<tr>
<td>6</td>
<td>Gasket BACK (Teflon), 2.3 mm hole, outlet side</td>
<td>See kits below</td>
</tr>
<tr>
<td>7</td>
<td>Gasket FRONT (Teflon), 1.3 mm hole, inlet side</td>
<td>See kits below</td>
</tr>
<tr>
<td>8</td>
<td>Window assembly, comprises item 1, 2, 3, 4, 5</td>
<td>No part number</td>
</tr>
<tr>
<td>9</td>
<td>Capillary IN (0.17 mm, 590 mm lg) including heat exchanger</td>
<td>G1315-87321</td>
</tr>
<tr>
<td>10</td>
<td>Capillary OUT (0.17 mm, 200 mm lg)</td>
<td>G1315-87302</td>
</tr>
<tr>
<td>11</td>
<td>Clamp unit</td>
<td>G1315-84901</td>
</tr>
<tr>
<td></td>
<td>Screw M 2.5, 4 mm lg for cell body/clamp</td>
<td>0515-1056</td>
</tr>
<tr>
<td></td>
<td>Zero dead volume fitting</td>
<td>0100-0900</td>
</tr>
<tr>
<td></td>
<td>Cell repair kit STD, includes window screw kit, 4mm hexagonal wrench and seal kit</td>
<td>G1315-68712</td>
</tr>
<tr>
<td></td>
<td>Seal kit BACK for STD flow cell, qty=12 of item 6</td>
<td>G1315-68711</td>
</tr>
<tr>
<td></td>
<td>Seal kit FRONT for STD flow cell, qty=12 of item 7</td>
<td>G1315-68710</td>
</tr>
<tr>
<td></td>
<td>Window screw kit, includes 2 quartz windows, 2 compression washers, 2 window holders, 2 window screws and 10 spring washers</td>
<td>79883-68703</td>
</tr>
</tbody>
</table>

NOTE

Gaskets #6 and #7 have different hole diameters.
1 - window screw
2 - spring washers
3 - compression washer
4 - window holder
5 - quartz window
6 - Gasket

Figure 37 Standard Flow Cell Parts

Figure 38 Orientation of Spring Washers.

Semi-Micro Flow Cell

Table 11 Semi-Micro Flow Cell Parts
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Window screw</td>
<td>79883-22402</td>
</tr>
<tr>
<td>2</td>
<td>Spring washers, pack of 10</td>
<td>5062-8553</td>
</tr>
<tr>
<td>3</td>
<td>Compression washer</td>
<td>79883-28801</td>
</tr>
<tr>
<td>4</td>
<td>Window holder</td>
<td>79883-22301</td>
</tr>
<tr>
<td>5</td>
<td>Quartz window</td>
<td>1000-0488</td>
</tr>
<tr>
<td>6</td>
<td>Gasket BACK (Teflon), 1.8 mm hole, outlet side</td>
<td>See kits below</td>
</tr>
<tr>
<td>7</td>
<td>Gasket FRONT (Teflon), 1.3 mm hole, inlet side</td>
<td>See kits below</td>
</tr>
<tr>
<td>8</td>
<td>Window assembly, comprises item 1, 2, 3, 4, 5</td>
<td>No part number</td>
</tr>
<tr>
<td>9</td>
<td>Capillary IN (0.12 mm, 290 mm lg) including heat exchanger</td>
<td>G1315-87325</td>
</tr>
<tr>
<td>10</td>
<td>Capillary OUT (0.12 mm, 200 mm lg)</td>
<td>G1315-87306</td>
</tr>
<tr>
<td></td>
<td>Capillary OUT (0.17 mm, 200 mm lg)</td>
<td>G1315-87302</td>
</tr>
<tr>
<td>11</td>
<td>Clamp unit</td>
<td>G1315-84901</td>
</tr>
<tr>
<td></td>
<td>Screw M 2.5, 4 mm lg for cell body/clamp</td>
<td>0515-1056</td>
</tr>
<tr>
<td></td>
<td>Zero dead volume fitting</td>
<td>0100-0900</td>
</tr>
<tr>
<td></td>
<td>Cell repair kit semi-micro, includes window screw kit, 4 mm hexagonal wrench and seal kits</td>
<td>G1315-68713</td>
</tr>
<tr>
<td></td>
<td>Seal kit BACK for semi-micro flow cell, qty=12 of item 6</td>
<td>79883-68702</td>
</tr>
<tr>
<td></td>
<td>Seal kit FRONT for semi-micro flow cell, qty=12 of item 7</td>
<td>G1315-68710</td>
</tr>
<tr>
<td></td>
<td>Window screw kit, includes 2 quartz windows, 2 compression washers, 2 window holders, 2 window screws and 10 spring washers</td>
<td>79883-68703</td>
</tr>
</tbody>
</table>

NOTE
Gaskets #6 and #7 have different hole diameters.

1 - window screw
2 - spring washers
3 - compression washer
4 - window holder
5 - quartz window
6 - Gasket

Figure 40 Orientation of Spring Washers.
5 Identifying Parts and Materials

High Pressure Flow Cell

Table 12 Repair Parts: Micro Flow Cell Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High pressure flow cell assembly, 6 mm, 1.7 µl, maximum</td>
<td>G1315-60015</td>
</tr>
<tr>
<td></td>
<td>pressure 400 bar</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Window assembly, comprises items 2, 3, 4, 5 and 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Seal ring</td>
<td>79883-27101</td>
</tr>
<tr>
<td>3</td>
<td>Quartz window</td>
<td>1000-0953</td>
</tr>
<tr>
<td>4</td>
<td>Compression washer</td>
<td>79883-28802</td>
</tr>
<tr>
<td>5</td>
<td>Spring washers (pack of 10)</td>
<td>5062-8553</td>
</tr>
<tr>
<td>6</td>
<td>Window screw</td>
<td>79883-22404</td>
</tr>
<tr>
<td>7</td>
<td>Capillary IN (0.12 mm, 290 mm lg) including heat exchanger</td>
<td>G1315-87325</td>
</tr>
<tr>
<td>8</td>
<td>Capillary OUT (0.12 mm, 200 mm lg)</td>
<td>G1315-87306</td>
</tr>
<tr>
<td>9</td>
<td>Clamp unit</td>
<td>G1315-84901</td>
</tr>
<tr>
<td></td>
<td>Screw M 2.5, 4 mm lg for cell body/clamp unit</td>
<td>0515-1056</td>
</tr>
<tr>
<td></td>
<td>Capillary (0.12 mm, 150 mm lg)</td>
<td>G1315-87312</td>
</tr>
<tr>
<td></td>
<td>Capillary (0.17 mm, 380 mm lg)</td>
<td>G1315-87311</td>
</tr>
<tr>
<td></td>
<td>Cell Repair Kit Agilent, includes 1 quartz window,</td>
<td>79883-68700</td>
</tr>
<tr>
<td></td>
<td>5 spring washers, 2 seal rings</td>
<td></td>
</tr>
</tbody>
</table>
Nano Flow Cells

The following kits are available:

<table>
<thead>
<tr>
<th>Table 13 Nano-flow cell kits</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
500 nl Flow Cell Kit includes Flow cell assembly (10 mm, 500 nl, 5 MPa) completely assembled (includes items 1, 2, 3, 4, 10, 11, 12, 13, 14, 15, and 16) G1315-68724

80 nl Flow Cell Kit includes Flow cell assembly (10 mm, 500 nl, 5 MPa) completely assembled (includes items 1, 2, 3, 4, 10, 11, 12, 13, 14, 15, and 16) G1315-68716

Figure 42 shows all parts delivered with the nano-flow cell kits.

Table 14 lists the generic parts for both nano-flow cells:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fitting Screw (for 4 mm wrench), QTY=2 (reorder 10/pk)</td>
<td>5063-6593</td>
</tr>
<tr>
<td>4</td>
<td>Cell ferrules are factory installed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PEEK fitting 1/32" (not attached to capillaries), (reorder 10/pk)</td>
<td>5065-4422</td>
</tr>
<tr>
<td>7</td>
<td>Litetouch ferrules LT-100, (1/32" Ferrule and SS lock ring), QTY=2 (reorder 10/pk)</td>
<td>5063-6592</td>
</tr>
</tbody>
</table>
Table 15 lists the specific parts for the 500 nl flow cell.

Table 15 Specific 500 nl Flow Cell Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 nl Flow Cell Kit</td>
<td>G1315-68724</td>
</tr>
<tr>
<td>1</td>
<td>PEEK coated fused silica capillary Inlet (100 µm) pre-mounted to cell, includes Inlet capillary, 300 mm long, 100 µm i.d. with pre-fixed ferrules (#4) and fittings (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87333</td>
</tr>
<tr>
<td>2</td>
<td>PEEK coated fused silica capillary Outlet (100 µm) pre-mounted to cell, includes Outlet capillary, 120 mm long, 100 µm i.d. with pre-fixed ferrules (#4) and fitting (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87338</td>
</tr>
<tr>
<td>1</td>
<td>PEEK coated fused silica capillary Inlet (50 µm) alternative, includes Inlet capillary, 400 mm long, 50 µm i.d. with pre-fixed ferrules (#4) and fittings (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87323</td>
</tr>
<tr>
<td>2</td>
<td>PEEK coated fused silica capillary Outlet (50 µm), alternative, includes Outlet capillary, 120 mm long, 50 µm i.d. with pre-fixed ferrules (#4) and fitting (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87328</td>
</tr>
</tbody>
</table>
5 Identifying Parts and Materials

1. PEEK coated fused silica capillary Inlet (50 µm) **for earlier 500 nl version kits**, includes Inlet capillary, 400 mm long, 50 µm i.d. with pre-fixed ferrules (#4) and fittings (#3), plus one PEEK Fitting FT (#5) G1315-87323

2. PEEK coated fused silica capillary Outlet (75 µm) **for earlier 500 nl version kits**, includes Outlet capillary, 700 mm long, 75 µm i.d. with pre-fixed ferrules (#4) and fitting (#3), plus one PEEK Fitting FT (#5) G1315-68708

Sealing Kit, includes items #10, #12 (QTY=2) and #7 (QTY=5) G1315-68715

Table 16 lists the specific parts for the 80 nl flow cell.

Table 16 Specific 80 nl Flow Cell Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 nl Flow Cell Kit</td>
<td></td>
<td>G1315-68716</td>
</tr>
<tr>
<td>1</td>
<td>PEEK coated fused silica capillary Inlet (50 µm) pre-mounted to cell, includes Inlet capillary, 400 mm long, 50 µm i.d. with pre-fixed ferrules (#4) and fittings (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87323</td>
</tr>
<tr>
<td>2</td>
<td>PEEK coated fused silica capillary Outlet (50 µm) pre-mounted to cell, includes Outlet capillary, 120 mm long, 50 µm i.d. with pre-fixed ferrules (#4) and fitting (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87328</td>
</tr>
<tr>
<td>1</td>
<td>PEEK coated fused silica capillary Inlet (25 µm) alternative, includes Inlet capillary, 200 mm long, 25 µm i.d. with pre-fixed ferrules (#4) and fittings (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87313</td>
</tr>
<tr>
<td>2</td>
<td>PEEK coated fused silica capillary Outlet (25 µm) alternative, includes Outlet capillary, 600 mm long, 25 µm i.d. with pre-fixed ferrules (#4) and fitting (#3), plus one PEEK Fitting FT (#5)</td>
<td>G1315-87318</td>
</tr>
</tbody>
</table>
Fan Assembly Parts

Table 17 Fan Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan (for all DAD/MWDs)</td>
<td>3160-1016</td>
</tr>
<tr>
<td>2</td>
<td>Heater assembly (G1315/65B only)</td>
<td>G1315-60000</td>
</tr>
<tr>
<td>3</td>
<td>Temperature sensor assembly (G1315/65B only)</td>
<td>G1315-60003</td>
</tr>
<tr>
<td>4</td>
<td>Sensor holder (G1315/65B only)</td>
<td>G1315-22300</td>
</tr>
</tbody>
</table>

Figure 43 Fan Assembly Parts

Holmium Oxide Filter
Identifying Parts and Materials

Table 18 Holmium Oxide Filter Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Holmium oxide filter motor assembly, includes items 2 and 4</td>
<td>G1315-68700</td>
</tr>
<tr>
<td>2</td>
<td>Holmium oxide filter lever</td>
<td>G1315-45001</td>
</tr>
<tr>
<td>3</td>
<td>Holmium oxide filter</td>
<td>79880-22711</td>
</tr>
<tr>
<td>4</td>
<td>Spring</td>
<td>1460-1510</td>
</tr>
</tbody>
</table>

When the filter motor has been removed, the filter lever should not be reused. Use always a new filter lever to assure correct fit on the filter motor shaft.
Coupling Lens Assembly

Table 19 Coupling Lens Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retainer ring</td>
<td>G1103-68001</td>
</tr>
<tr>
<td>2</td>
<td>Washer-spring wavy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lens support</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lens</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Lens holder</td>
<td></td>
</tr>
</tbody>
</table>

Figure 45 Coupling Lens Assembly Parts

Source Lens (Achromat) Assembly

Table 20 Source Lens Assembly
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source lens (achromat) assembly includes a filter lever</td>
<td>G1315-45001</td>
<td>G1315-65201</td>
</tr>
<tr>
<td>1</td>
<td>Lens achromatic</td>
<td>1000-0486</td>
</tr>
<tr>
<td>2</td>
<td>Spring compression</td>
<td>1460-2255</td>
</tr>
<tr>
<td>3</td>
<td>Spectro window</td>
<td>79880-28111</td>
</tr>
<tr>
<td>4</td>
<td>Holder</td>
<td></td>
</tr>
</tbody>
</table>

When the filter motor has been removed, the filter lever should not be reused. Use always a new filter lever to assure correct fit on the filter motor shaft.

NOTE

Figure 46
Source Lens (Achromat) Assembly Parts

Cell Support Assembly

Table 21 Cell Support Assembly
Control Module

Cell Support Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retainer ring</td>
<td>0510-1638</td>
</tr>
<tr>
<td>2</td>
<td>Washer-spring wavy</td>
<td>3050-1591</td>
</tr>
<tr>
<td>3</td>
<td>Spectro window</td>
<td>79880-28111</td>
</tr>
<tr>
<td>4</td>
<td>Cell support</td>
<td>G1315-24701</td>
</tr>
</tbody>
</table>

![Cell Support Assembly Parts](image)

Control Module Parts

Table 22

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Module, replacement part including cable</td>
<td>G1323-67001</td>
</tr>
<tr>
<td>2</td>
<td>Plastic Housing Kit, includes front, back and a clamp</td>
<td>5062-8583</td>
</tr>
<tr>
<td>3</td>
<td>CAN cable Agilent 1100 module to control module</td>
<td>G1323-81600</td>
</tr>
</tbody>
</table>
Figure 48 Control Module

Sheet Metal Kit (G1315A/G1365A)

NOTE For the information on the sheet metal kit for the G1315B and G1365B refer to “Sheet Metal Kit (G1315B/G1365B)” on page 203.

Table 23 Sheet Metal Kit Parts (G1315A/G1365A)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sheet metal kit includes case and top cover</td>
<td>G1315-68701</td>
</tr>
<tr>
<td>2</td>
<td>Screws M3 for cover and flow cell door</td>
<td>5022-2112</td>
</tr>
<tr>
<td>3</td>
<td>Thumb screw for union holder</td>
<td>0515-2769</td>
</tr>
<tr>
<td>4</td>
<td>Zero dead volume fitting</td>
<td>0100-0900</td>
</tr>
<tr>
<td>5</td>
<td>Union holder clamp</td>
<td>G1315-05205</td>
</tr>
</tbody>
</table>
For the information on the sheet metal kit for the G1315A and G1365A refer to “Sheet Metal Kit (G1315A/G1365A)” on page 202.

Table 24 Sheet Metal Kit Parts (G1315B/G1365B)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sheet metal kit includes case, top cover and front</td>
<td>G1315-68721</td>
</tr>
<tr>
<td>2</td>
<td>Screws M3 for cover and flow cell door</td>
<td>5022-2112</td>
</tr>
<tr>
<td>3</td>
<td>Thumb screw for union holder</td>
<td>0515-2769</td>
</tr>
<tr>
<td>4</td>
<td>Zero dead volume fitting</td>
<td>0100-0900</td>
</tr>
<tr>
<td>5</td>
<td>Union holder clamp</td>
<td>G1315-05205</td>
</tr>
</tbody>
</table>
Plastic Parts

Table 25
Plastics Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front cover</td>
<td>5062-8582</td>
</tr>
<tr>
<td>2</td>
<td>Plastics, includes base, sides and top</td>
<td>5062-8565</td>
</tr>
<tr>
<td>3</td>
<td>Name plate Agilent 1100 Series</td>
<td>5042-1381</td>
</tr>
</tbody>
</table>
For correct assembling of the top and sides, see “Assembling the Main Cover” on page 178.

Foam Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>EPP foam kit, includes base and top</td>
<td>G1315-68722</td>
</tr>
<tr>
<td>3</td>
<td>Damper kit (includes 7 bumpers)</td>
<td>G1315-68706</td>
</tr>
<tr>
<td>4</td>
<td>Guides for interface board</td>
<td>5041-8395</td>
</tr>
</tbody>
</table>

Do not order the individual part numbers mentioned on the foam.
Power and Status Light Pipes

Table 27: Power and Status Light Pipes

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power supply assembly</td>
<td>0950-2528</td>
</tr>
<tr>
<td></td>
<td>Screw M4 x 0.7, 8 mm lg, to fix power supply at rear panel</td>
<td>0515-0910</td>
</tr>
<tr>
<td></td>
<td>Washer</td>
<td>2190-0409</td>
</tr>
<tr>
<td>1</td>
<td>Power light pipe</td>
<td>5041-8382</td>
</tr>
<tr>
<td>2</td>
<td>Status light pipe</td>
<td>5041-8384</td>
</tr>
</tbody>
</table>
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Power switch button</td>
<td>5041-8381</td>
</tr>
<tr>
<td>4</td>
<td>Coupler for power supply actuator</td>
<td>5041-8383</td>
</tr>
</tbody>
</table>

Leak Parts

Figure 53 Power and Status Light Pipe

Table 28 Leak Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leak sensor assembly</td>
<td>5061-3356</td>
</tr>
<tr>
<td>2</td>
<td>Leak pan</td>
<td>G1315-45501</td>
</tr>
<tr>
<td>3</td>
<td>Leak funnel</td>
<td>5041-8388</td>
</tr>
<tr>
<td>4</td>
<td>Leak funnel holder</td>
<td>5041-8389</td>
</tr>
<tr>
<td>5</td>
<td>Clip</td>
<td>5041-8387</td>
</tr>
<tr>
<td>6</td>
<td>Corrugated tubing, 120 mm lg, re-order 5 m</td>
<td>5062-2463</td>
</tr>
<tr>
<td>7</td>
<td>Corrugated tubing, 120 mm lg, re-order 5 m</td>
<td>5062-2463</td>
</tr>
</tbody>
</table>
Accessory Kit

This kit contains some accessories and tools needed for the installation and repair of the detector.

Table 29 Accessory Kit Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accessory kit</td>
<td>G1315-68705</td>
</tr>
<tr>
<td>2</td>
<td>Corrugated tubing (to waste), re-order 5 m</td>
<td>5062-2463</td>
</tr>
<tr>
<td>3</td>
<td>Teflon Tubing flexible i.d. 0.8 mm (flow cell to waste), re-order 5 m</td>
<td>5062-2462</td>
</tr>
<tr>
<td>4</td>
<td>Fitting male PEEK, Qty=1</td>
<td>0100-1516</td>
</tr>
<tr>
<td>5</td>
<td>Capillary column – detector 380 mm lg, 0.17 i.d. includes items 4 , 5 and 6 (not assembled)</td>
<td>G1315-87311</td>
</tr>
<tr>
<td>6</td>
<td>Ferrule front SST, qty=2</td>
<td>0100-0043</td>
</tr>
<tr>
<td></td>
<td>Part Description</td>
<td>Item Number</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>5</td>
<td>Ferrule back SST, qty=2</td>
<td>0100-0044</td>
</tr>
<tr>
<td>6</td>
<td>Fitting SST, qty=2</td>
<td>79814-22406</td>
</tr>
<tr>
<td></td>
<td>Hex key set 1 – 5 mm</td>
<td>8710-0641</td>
</tr>
<tr>
<td></td>
<td>Wrench open end 1/4 – 5/16 inch</td>
<td>8710-0510</td>
</tr>
<tr>
<td></td>
<td>Wrench open end 4 mm</td>
<td>8710-1534</td>
</tr>
<tr>
<td></td>
<td>ESD wrist strap</td>
<td>9300-1408</td>
</tr>
</tbody>
</table>

For item number refer to Figure 55 and Figure 56.

Figure 55 Waste Tubing Parts

Figure 56 Inlet Capillary (Column-Detector) Parts

This end is pre-installed
Cable Overview

WARNING

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

<table>
<thead>
<tr>
<th>Table 30</th>
<th>Cables Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>Analog cables</td>
<td>3390/2/3 integrators</td>
</tr>
<tr>
<td></td>
<td>3394/6 integrators</td>
</tr>
<tr>
<td></td>
<td>35900A A/D converter</td>
</tr>
<tr>
<td></td>
<td>General purpose (spade lugs)</td>
</tr>
<tr>
<td>Remote cables</td>
<td>3390 integrator</td>
</tr>
<tr>
<td></td>
<td>3392/3 integrators</td>
</tr>
<tr>
<td></td>
<td>3394 integrator</td>
</tr>
<tr>
<td></td>
<td>3396A (Series I) integrator</td>
</tr>
<tr>
<td></td>
<td>3396 Series II / 3395A integrator, see page 217</td>
</tr>
<tr>
<td></td>
<td>3396 Series III / 3395B integrator</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100 / 1050 modules / 1046A FLD</td>
</tr>
<tr>
<td></td>
<td>1046A FLD</td>
</tr>
<tr>
<td></td>
<td>35900A A/D converter</td>
</tr>
</tbody>
</table>
Table 30 Cables Overview, continued

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCD cables</td>
<td>3396 integrator</td>
<td>03396-60560</td>
</tr>
<tr>
<td></td>
<td>General purpose (spade Lugs)</td>
<td>G1351-81600</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>Agilent 1100 Series vacuum degasser</td>
<td>G1322-61600</td>
</tr>
<tr>
<td>CAN cables</td>
<td>Agilent 1100 module to module, 0.5 m</td>
<td>5181-1516</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100 module to module, 1 m</td>
<td>5181-1519</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100 module to control module</td>
<td>G1323-81600</td>
</tr>
<tr>
<td>External contacts</td>
<td>Agilent 1100 Series interface board to general purpose</td>
<td>G1103-61611</td>
</tr>
<tr>
<td>GPIB cable</td>
<td>Agilent 1100 module to Agilent ChemStation, 1 m</td>
<td>10833 A</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100 module to Agilent ChemStation, 2 m</td>
<td>10833 B</td>
</tr>
<tr>
<td>RS-232 cable</td>
<td>Agilent 1100 module to a computer</td>
<td>34398 A</td>
</tr>
<tr>
<td></td>
<td>This kit contains a 9-pin female to 9-pin female Null Modem (printer) cable and one adapter.</td>
<td></td>
</tr>
<tr>
<td>LAN cable</td>
<td>Cross-over network cable (shielded, 3 m long), (for point to point connection)</td>
<td>5023-0203</td>
</tr>
<tr>
<td></td>
<td>Twisted pair network cable (shielded, 7 m long) (for hub connections)</td>
<td>5023-0202</td>
</tr>
</tbody>
</table>
Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent 1100 Series modules. The other end depends on the instrument to which connection is being made.

Agilent 1100 to 3390/2/3 Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3390/2/3</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01040-60101</td>
<td>1</td>
<td>Shield</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Center</td>
<td>Signal +</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Connected to pin 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Shield</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Connected to pin 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Key</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100 to 3394/6 Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3394/6</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>35900-60750</td>
<td>1</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Shield</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Center</td>
<td>Analog +</td>
</tr>
</tbody>
</table>
Agilent 1100 to BNC Connector

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin BNC</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8120-1840</td>
<td>Shield</td>
<td>Shield</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>Center</td>
<td>Analog +</td>
</tr>
</tbody>
</table>

![Diagram of connector](image)

Agilent 1100 to General Purpose

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3394/6</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01046-60105</td>
<td>1</td>
<td></td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Black</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Red</td>
<td>Analog +</td>
</tr>
</tbody>
</table>
5 Identifying Parts and Materials
Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent 1100 Series modules. The other end depends on the instrument to be connected to.

Agilent 1100 to 3390 Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3390</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01046-60203</td>
<td>2</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
</tbody>
</table>

Agilent 1100 to 3392/3 Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3392/3</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01046-60206</td>
<td>3</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td>Connector</td>
<td>Pin 3394</td>
<td>Pin Agilent 1100</td>
<td>Signal Name</td>
<td>Active (TTL)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>01046-60210</td>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>5,14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>1 13, 15</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
</tbody>
</table>

NOTE

START and STOP are connected via diodes to pin 3 of the 3394 connector.
Agilent 1100 to 3396A Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3394</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03394-60600</td>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>5,14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>13, 15</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100 to 3396 Series II / 3395A Integrators

Use the cable 03394-60600 and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

Agilent 1100 to 3396 Series III / 3395B Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 33XX</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03396-61010</td>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>13, 15</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Parts and Materials

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>NC 6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td>14 7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td>4 8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td>NC 9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
<tr>
<td>13, 15 Not connected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100 to HP 1050, 1046A or Agilent 35900 A/D Converters

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin HP 1050 / ...</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5061-3378</td>
<td>1 - White</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - Brown</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3 - Gray</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>4 - Blue</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>5 - Pink</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 - Yellow</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>7 - Red</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>8 - Green</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>9 - Black</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
</tbody>
</table>

Agilent 1100 to HP 1090 LC or Signal Distribution Module

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin HP 1090</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01046-60202</td>
<td>1</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Parts and Materials

1100 Series DAD and MWD Reference Manual

<table>
<thead>
<tr>
<th>Key</th>
<th>Pin Color</th>
<th>Signal Name</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td>7</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td>8</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
</tbody>
</table>

Agilent 1100 to General Purpose Connector

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin Universal</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01046-60201</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
One end of these cables provides a 15-pin BCD connector to be connected to the Agilent 1100 Series modules. The other end depends on the instrument to be connected to.

Agilent 1100 to General Purpose

<table>
<thead>
<tr>
<th>Connector</th>
<th>Wire Color</th>
<th>Pin</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1351-81600</td>
<td>Green</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>5</td>
<td>BCD 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gray</td>
<td>9</td>
<td>Digital ground</td>
<td>Gray</td>
</tr>
<tr>
<td></td>
<td>Gray/pink</td>
<td>10</td>
<td>BCD 11</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Red/blue</td>
<td>11</td>
<td>BCD 10</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>White/green</td>
<td>12</td>
<td>BCD 9</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Brown/green</td>
<td>13</td>
<td>BCD 8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>15</td>
<td>+5 V</td>
<td>Low</td>
</tr>
</tbody>
</table>
Agilent 1100 to 3396 Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin 3392/3</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>03396-60560</td>
<td>1</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>BCD0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>15</td>
<td>+ 5 V</td>
<td>Low</td>
</tr>
</tbody>
</table>
Identifying Parts and Materials

Auxiliary Cable

One end of this cable provides a modular plug to be connected to the Agilent 1100 Series vacuum degasser. The other end is for general purpose.

Agilent 1100 Series Degasser to general purposes

<table>
<thead>
<tr>
<th>Connector</th>
<th>Color</th>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1322-61600</td>
<td>White</td>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>2</td>
<td>Pressure signal</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grey</td>
<td>5</td>
<td>DC + 5 V IN</td>
</tr>
<tr>
<td></td>
<td>Pink</td>
<td>6</td>
<td>Vent</td>
</tr>
</tbody>
</table>

CAN Cable

Both ends of this cable provide a modular plug to be connected to Agilent 1100 Series module’s CAN-bus connectors.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1100 module to module, 0.5 m</td>
<td>5181-1516</td>
</tr>
<tr>
<td>Agilent 1100 module to module, 1 m</td>
<td>5181-1519</td>
</tr>
<tr>
<td>Agilent 1100 module to control module</td>
<td>G1323-81600</td>
</tr>
</tbody>
</table>
External Contact Cable

One end of this cable provides a 15-pin plug to be connected to Agilent 1100 Series module’s interface board. The other end is for general purpose.

Agilent 1100 Series Interface Board to general purposes

<table>
<thead>
<tr>
<th>Connector</th>
<th>Color</th>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1103-61611</td>
<td>White</td>
<td>1</td>
<td>EXT 1</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>2</td>
<td>EXT 1</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>3</td>
<td>EXT 2</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td>EXT 2</td>
</tr>
<tr>
<td></td>
<td>Grey</td>
<td>5</td>
<td>EXT 3</td>
</tr>
<tr>
<td></td>
<td>Pink</td>
<td>6</td>
<td>EXT 3</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>7</td>
<td>EXT 4</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>8</td>
<td>EXT 4</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>9</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>10</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>Grey/pink</td>
<td>11</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>Red/blue</td>
<td>12</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>White/green</td>
<td>13</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>Brown/green</td>
<td>14</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>White/yellow</td>
<td>15</td>
<td>Not connected</td>
</tr>
</tbody>
</table>

RS-232 Cable Kit

This kit contains a 9-pin female to 9-pin female Null Modem (printer) cable and one adapter. Use the cable and adapter to connect Aligent Technologies instruments with 9-pin male RS-232 connectors to most PCs or printers.
LAN Cables

Recommended Cables

Table 31

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-over network cable (shielded, 3 m long), (for point to point connection)</td>
<td>5023-0203</td>
</tr>
<tr>
<td>Twisted pair network cable (shielded, 7 m long), (for hub connections)</td>
<td>5023-0202</td>
</tr>
</tbody>
</table>
Introduction to the Detector

Optical System Overview

Electrical Connections

Instrument Layout

Early Maintenance Feedback (EMF)

Electronics

Detector Main Board (DAM/MWM)

Firmware Description

Raw Data Conversion to Absorbance

Optional Interface Boards

Interfaces

Setting the 8-bit Configuration Switch

The Main Power Supply Assembly
Introduction to the Detector

The detector is designed for highest optical performance, GLP compliance and easy maintenance. It includes the following features:

- long-life deuterium and tungsten lamps for highest intensity and lowest detection limit over a wavelength range of 190–950 nm,
- no loss in sensitivity for up to five wavelengths simultaneous,
- programmable slit from 1–16 nm for complete optimization of sensitivity, linearity and spectral resolution,
- optional flow-cell cartridges (standard 10 mm 13 µl, semi-micro 6 mm 5 µl, 80 nl, 500 nl, 10 mm, high pressure 10 mm 1.7 µl and prep-cells) are available and can be used depending on the application needs,
- easy front access to lamps and flow cell for fast replacement, and
- built-in holmium oxide filter for fast wavelength accuracy verification,
- built-in temperature control for improved baseline stability (G1315B DAD and G1365B MWD).

For specifications, see “Performance Specifications” on page 296.

Optical System Overview

Optical System

The optical system of the detector is shown in Figure 57. Its illumination source is a combination of a deuterium-arc-discharge lamp for the ultraviolet (UV) wavelength range and a tungsten lamp for the visible (VIS) and short-wave near-infrared (SWNIR) wavelength range. The image of the filament of the tungsten lamp is focused on the discharge aperture of the deuterium lamp by means of a special rear-access lamp design which allows both light sources to be optically combined and share a common axis to the source lens. The achromat (source lens) forms a single, focused beam of light through the flow cell. Each cell room and lamp are separated by a quartz window which can be cleaned or replaced. In the spectrograph, light is being dispersed onto the diode array by a holographic grating. This allows simultaneous access to all wavelength information.
The light source for the UV-wavelength range is a deuterium lamp with a shine-through aperture. As a result of plasma discharge in low-pressure deuterium gas, the lamp emits light over the 190-nm to approximately 800-nm wavelength range. The light source for the visible and SWNIR wavelength range is a low noise tungsten lamp. This lamp emits light over the wavelength range 470 – 950 nm.

The achromat receives the light from both lamps and focuses it so that the beam passes through the flow cell.

The holmium oxide filter is electromechanically actuated. During the holmium filter test it moves into the light path.

The cell support window assembly separates the holmium filter area from the flow cell area.

The optical unit has a flow cell compartment for easy access to flow cells. A variety of optional flow cells can be inserted using the same quick, simple mounting system. The flow cell can be removed to check the optical and electronic performance of the detector without having influences from the flow cell.
6 Introduction to the Detector

Spectrograph
The spectrograph material is ceramic to reduce thermal effects to a minimum. The spectrograph consists of the spectrograph lens, the variable entrance slit, the grating and the photodiode array with front-end electronics. The spectrograph lens refocuses the light beam after it has passed through the flow cell. The sampling interval of the diode array is < 1 nm over the wavelength range 190 – 950 nm. Depending on the wavelength this varies from 1.0 to 1.25 diodes per nanometer (for example a diode every 0.8 to 1 nm).

For a small wavelength range, the small non-linearity could be neglected. With the wavelength range from 190 – 950 nm a new approach is required to achieve wavelength accuracy over the full range. Each spectograph is calibrated individually. The calibration data is stored in the spectrograph on an EEPROM. Based on these data, the built-in processors calculate absorbance data with linear intervals (1.0, 2.0, ...) between data points. This results in an excellent wavelength accuracy and instrument-to-instrument reproducibility.

Variable Entrance Slit System
The micro-slit system makes use of the mechanical properties of silicon combined with the precise structuring capabilities of bulk micro-machining. It combines the required optical functions — slit and shutter — in a simple and compact component. The slit width is directly controlled by the micro-processor of the instrument and can be set as method parameter.

Grating
The combination of dispersion and spectral imaging is accomplished by using a concave holographic grating. The grating separates the light beam into all its component wavelengths and reflects the light onto the photodiode array.

Diode Array
The diode array is a series of 1024 individual photodiodes and control circuits located on a ceramic carrier. With a wavelength range from 190 – 950 nm the sampling interval is < 1 nm.
Electrical Connections

- The GPIB connector is used to connect the detector with a computer. The address and control switch module next to the GPIB connector determines the GPIB address of your detector. The switches are preset to a default address (see “GPIB Default Addresses” on page 262) which is recognized once after power is switched on.

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal Agilent 1100 Series module data transfer and synchronization.

- Two independent analog outputs provide signals for integrators or data handling systems.

- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.

- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.

- With the appropriate software, the RS-232C connector may be used to control the detector from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch next to the GPIB connector (see “Communication Settings for RS-232C Communication” on page 263). See your software documentation for further information.

- The power input socket accepts a line voltage of 100 – 120 V or 220 – 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption is 300 VA/125 W. There is no voltage selector on your detector because the power supply has a wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply. The security lever at the power input socket prevents that the detector cover is taken off when line power is still connected.

WARNING Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
The industrial design of the detector incorporates several innovative features. It uses Agilent’s E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the detector are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.
Early Maintenance Feedback (EMF)

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the detector and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

The detector provides two EMF counters for the lamps. The counters increment with lamp use, and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. The counters can be reset to zero after the lamp is exchanged. The detector provides the following EMF counters:

- Deuterium Lamp On-Time
- Tungsten Lamp On-Time

Using the EMF Counters

The user-settable EMF limits for the EMF counters enable the early maintenance feedback to be adapted to specific user requirements. The useful lamp burn time is dependent on the requirements for the analysis (high or low sensitivity analysis, wavelength etc.), therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially, no EMF limit should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by lamp counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.
The electronics are comprised of four main components:

- **detector main board** (DAM/MWM), see page 238.
- **power supply**, see page 266.

Optional:

- **interface board** (BCD/external contacts), see page 253.
- **interface board** (LAN), see page 255.
Detector Main Board (DAM/MWM)

This board controls all information and activities of all assemblies within the detector. Through interfaces (LAN, CAN, GPIB or RS-232C) connected to the user interface, the operator enters parameters, changes modes and controls the detector.

ASIC — Application Specific Integrated Circuit

The 304-pin application specific integrated circuit (ASIC) provides interfacing to external devices through drivers, including LAN, GPIB, CAN, APG remote, and RS-232C. It also provides generic functionality like PWM (pulse width modulation) and digital encoder reading.

Main processor

The Motorola MC 68332 microprocessor acts as the main processor with a clock frequency of 16 MHz. It exchanges data with the ASIC through the core bus as well as with the PSRAM (pseudo-static random access memory) of 2 × 512 kilobyte, the flash EEPROM (electrically erasable programmable read-only memory) of 1 MB and the 1 × 32 KB battery-backed NV-RAM (non-volatile). Battery life is designed to last for more than 25 years under normal operating conditions.

Control lines provide communication to the lamp supply section, which controls the deuterium and tungsten lamps. The main processor is connected to the SSP (signal and spectra processor) through an 8-bit parallel bus.

SSP — Signal and Spectra Processor

The SSP (signal and spectra processor) utilizing a dedicated ASIC and RAM of 3 × 128 KB, converts the 1024 raw data values to intensity and absorbance values.

Conversion and subsequent calculation to achieve absorbance values include the following tasks:

• dark current correction,
• PDA (photo diode array) temperature compensation,
• absorbance calculation, and
• signal averaging.

SIMM Memory Module
The main board versions -66500, -66520 and -66530 provided 4 slots for extended memory (up to 4×1 MB or up to 4×4 MB to accommodate more run buffer (signal and spectral data). Only 1 MB was used (no need to upgrade for any application). With main board version -66540 the slots were removed and the 1 MB memory is now on-board (no upgrade possible).

Firmware

For an outline of the firmware, see “Firmware Description” on page 246. In case you require exact mathematical equations for the transformation, see the *Understanding Your Agilent ChemStation* handbook.

Leak Sensor

This block consists of a PTC for the leak detection and a NTC for the ambient temperature compensation. A leak would cool down the PTC and this change in resistance would generate a leak signal.

Fan Drive

The operation of the fan is controlled by the main processor and runs with constant revolution. The fan produces a sense signal which is derived from the revolution. This sense signal is used for diagnostics.

On-board Battery

An on-board lithium battery buffers the electronic memory when the module is turned off.

For safety information on lithium batteries see “Lithium Batteries Information” on page 303.
Figure 59 Block Diagram Detector Main Controller Functionality

SCI Board

The SCI (spectrograph connector interface), located on the optical unit assembly is the interface between micro-slit, PDA and detector main board. In addition, wavelength calibration data and manufacturing data from the manufacturing process (for example, serial number, dates, and so on) are stored in the EEPROM.
Introduction to the Detector

PDA Signal Conditioning Electronics

Data is transferred from the photodiode array (PDA) through the spectrograph connector interface (SCI) board to the PDA signal conditioning electronics. The PDA signal conditioning electronics adjusts the signal levels to provide an appropriate output signal.

A/D Converter

The output signal from the PDA signal conditioning electronics is directed to the 16-bit /160-kHz A/D converter. Multiplexing is used to monitor test signals for diagnostic purposes including GND, reference voltage (Vref), and a ramp signal. These signals are used to verify the front end electronics separately from the PDA. The signal from the PDA temperature sensor is used for temperature compensation.

PFP (PDA Front-end Processor)

The PFP on this board utilizing RAM of 3 × 32 KB and 1 × 8 KB and the EPLD (electronically programmable logic device) forwards the data from the 16-bit A/D converter. It provides timing and control for the photodiode readout and the A/D conversion.

Analog Outputs

There are two independent analog outputs (0…1 V full scale). Digital data from the ASIC is converted into a pulse-width modulated signal (PWM). The PWM signal is then fed to an amplitude modulator, which precisely turns the reference signal on and off. This signal then passes to a low-pass filter section.
Deuterium Lamp Filament Control

Before ignition, the deuterium lamp filament control circuit provides a constant voltage of 2.5 VDC at approximately 6 A to the filament of the deuterium lamp. The deuterium lamp filament control circuit is enabled by the processor on the DAM board.

Deuterium Lamp Current Control

The deuterium lamp current control circuit comprises two parts. One part generates an ignition pulse of 600 VDC for the lamp, resulting in lamp ignition. After ignition this voltage is disabled. The other part is a constant current source of 320 mA at an operating voltage of about 85 VDC for stable operating conditions and light emission of...
the deuterium lamp. The deuterium lamp current control circuit is supervised by the processor on the DAM board.

Igniting the Deuterium Lamp

The deuterium lamp is heated for several seconds prior to ignition. The deuterium lamp current control circuit gives an ignition pulse to the lamp, resulting in lamp ignition. The filament control circuit disables the filament voltage if the lamp was ignited successfully.

If the deuterium lamp failed to ignite, the whole sequence is repeated after a wait sequence for cooling down. If the deuterium lamp still does not ignite, an error message occurs.

Tungsten Lamp Voltage Control

The tungsten lamp voltage is generated by the tungsten lamp voltage control circuit which is enabled by the processor. This circuit provides a constant voltage of 6 VDC to operate the tungsten lamp.
Diagnostic A/D Converter

The diagnostic A/D converter senses currents and voltages of the deuterium and tungsten lamps and converts the analog signals into digital values. The digital values are transferred via the control bus on the detector main board. When values are outside the normal range, an appropriate error message is generated and the lamps will be switched off.
Safety Switches

If the EPP foam is removed while the instrument is still on, the safety light switches are activated and the deuterium lamp, the tungsten lamps and the fan are switched off.

Interfaces

For detailed information on interfaces, see “Interfaces” on page 256.

Temperature Control

The G1315B/G165B detectors are equipped with a temperature control to improve the baseline stability in unstable environments (e.g. strong variation of the temperature due to air condition systems). A heater and a temperature sensor assembly have been added and are controlled by the detector main board and its firmware. The temperature at the fan is compared with a temperature sensor on the main board. Depending on the difference the heater in front of the fan is controlled. There are no parameters to be set for the temperature control.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system,
- an instrument specific section, called main system.

Resident System

This resident section of the firmware is identical for all Agilent 1100 series modules. Its properties are:

- the complete communication capabilities (GPIB, CAN and RS-232C),
- memory management,
- ability to update the firmware of the ‘main system’.

Main System

Its properties are:

- the complete communication capabilities (GPIB, CAN, LAN and RS-232C),
- memory management,
• ability to update the firmware of the resident system.

In addition the main system comprises the instrument functions that are divided into common functions like
• run synchronization through APG remote
• error handling,
• diagnostic functions,
• or module specific functions like
• internal events such as lamp control, filter movements,
• raw data collection and conversion to absorbance (see “Raw Data Conversion to Absorbance” on page 248.

Firmware Updates

Firmware updates can be done using your user interface:
• handheld control module with files from a PC-card or
• Agilent ChemStation with files from floppy disk

The file naming conventions are:

`xxxx-vvv.DLB`, where

`xxxx` is the product number, for example, 1315 for the G1315A DAD, and `vvv` is the revision number, for example 104 is revision 1.04 For instructions refer to your user interface.

NOTE

Update of main system can be done in the resident system only.

Update of the resident system can be done in the main system only.
The raw data flow (from the photodiode array) and conversion to absorbance spectra for each data point is a multiple step process. This process is outlined in this section. For exact mathematical equations for the transformation, see the *Understanding Your Agilent ChemStation* handbook. Figure 63 shows the firmware flow diagram.

Subtract Dark Signal

Raw data coming from the photodiode array via the signal conditioning electronics (which includes a variable gain amplifier) are read from the A/D converter. For details, see “A/D Converter” on page 241. These raw data are intensity values of each photodiode of the array.

During a blank measurement a dark signal and electronic offset measurement is performed for each diode on the photodiode array. This offset spectrum is stored and subtracted from all subsequent intensity spectra to give dark signal corrected intensity spectra.

Gain Correction

During a blank measurement every photodiode is assigned a gain value, depending on the amount of light falling on the diode array. These gain values are stored in a table. They are used to adjust the amplification factor in the signal conditioning electronics. This process is used to adjust small signal levels to the optimum range of the A/D converter.
The DSP firmware uses the gain table to adjust the dark signal corrected intensity spectra.

Figure 63 Firmware Flow Diagram

Temperature Correction

The quantum efficiency of the photodiode array depends on the temperature and is different for each wavelength. The temperature dependency follows a monotone increasing function over the wavelength scale, which means it increases with longer wavelengths (above 600 nm).
Introduction to the Detector

To correct the intensity spectrum for temperature effects, the temperature on the photodiode array is averaged. With the help of a function, correction factors for each wavelength are calculated. The temperature factors are used to correct the intensity spectrum.

Temperature Filter

The temperature filter determines whether the temperature has been changed significantly. Only in this case, temperature correction is applied.

Absorbance Calculation and Filtering

To form an absorbance spectrum, the logarithm of the blank medium’s intensity spectrum is subtracted from the logarithm of the sample’s intensity spectrum.

Spectral filtering is used for noise reduction. Spectra are taken at faster rates than the corresponding integration time, set in the Agilent ChemStation’s user interface. Absorbance values of all wavelength form one absorbance spectrum.

Spectra Runbuffer (DAD Only)

Absorbance spectra are intermediately stored here if the acquisition of spectra is faster than the processing and data communication to the Agilent ChemStation. Intensity values can also be stored for special purposes, for example, diagnostic reasons.

Wavelength Axis Linearization,
Deuterium Line Data,
Wavelength Calibration Table

1024 photodiodes are located on the array to give a sampling interval of nominal <1 nm in the UV wavelength range. In the visible and short wave near infrared wavelength ranges, the sampling interval is slightly higher. To correct for this optical non-linearity and to convert from discrete diode distances to a continuous, linear scale, an interpolation algorithm is applied. This algorithm uses a wavelength calibration table and actual wavelength data, derived from the deuterium emission lines at 486 nm and 656 nm.

Wavelength calibration is done for each individual spectrograph during the production process. The individual calibration coefficients are stored in the wavelength calibration table in an EEPROM (electrically erasable PROM), which is part of the spectrograph electronics. Actually two sets of coefficients are used, one set for the wavelength range below the second order filter, located on the photodiode array, and one set for the upper
wavelength range. During each start-up of the spectrophotometer, each discrete wavelength value is assigned a photodiode of the array.

Recalibration in the diagnostic section of your Agilent ChemStation software can be performed to compensate for minor deviations from initial production conditions. Recalibration is achieved using the deuterium line data, that is, the exact positions of the deuterium emission lines at 486 nm and 656 nm. With the user interface, the operator can include the new parameters in the wavelength calibration table to calculate a table of correction coefficients which are applied to each spectrum.

Rawdata File

The runbuffer within the detector is used for signal and spectra data only. If the runbuffer is full, no further signal data are entered. This will guarantee useful signal data but may cause loss of interesting spectral data. The runbuffer can hold about 90 spectra depending on the settings and may be expanded by additional memory on the detector main board (SIMM modules).

Peak Detector

The peak detector (PD) always uses signal A as the *pilot* signal. The PD is adjusted by means of two setpoints: peakwidth and threshold. Both setpoints are time-programmable. While the PD-threshold is a method parameter of its own, the PD-peakwidth parameter is derived from the general peakwidth (PKWD) parameter. At the start of the run, the value for the PD-peakwidth is set equal to the PKWD setpoint. The peak detector recognizes changes in the slope of this signal (upslope, apex, downslope and baseline) and stores spectra according to the operator’s instructions. During the run the PD-peakwidth parameter can be changed by time-programming.

Spectra Acquisition Modes (DAD only)

The spectra acquisition mode allows automatic storage of spectra during a run. The mode can be changed during the run by time-programming.

The modes in detail are:

Table 32 Spectra Acquisition Modes
Introduction to the Detector

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>no spectra is stored</td>
</tr>
<tr>
<td>apex</td>
<td>top of peak spectra is stored</td>
</tr>
<tr>
<td>apex + baselines</td>
<td>last baseline spectrum before peak, top of peak spectrum and first baseline spectrum after peak is stored.</td>
</tr>
<tr>
<td>apex + slopes</td>
<td>spectrum in peak upslope, at top of peak and in peak downslope is stored.</td>
</tr>
<tr>
<td>apex + slopes + baselines</td>
<td>combined apex + slopes and apex + baselines.</td>
</tr>
<tr>
<td>all in peak</td>
<td>compared to storing all spectra periodically, only stores spectra within a peak at doubled period. Starts with last baseline spectrum before peak and ends with first baseline spectrum after peak. If baseline spectra are not detected, the spectrum before the first spectrum in peak or the spectrum after the last spectrum within the peak is stored instead.</td>
</tr>
<tr>
<td>all 2nd in peak</td>
<td>only the 2nd spectra of a peak is stored.</td>
</tr>
<tr>
<td>all second</td>
<td>periodically every 2nd spectra is stored (50 % of mode all).</td>
</tr>
</tbody>
</table>

Optional Interface Boards

The Agilent 1100 Series modules have one optional board slot that allows addition of an interface board to the modules.

Table 33 Optional Interface Boards

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCD Board</td>
<td>G1351-68701</td>
</tr>
<tr>
<td>Fuse 250 mA (four are on the board)</td>
<td>2110-0004</td>
</tr>
</tbody>
</table>
The BCD board provides a BCD output for the bottle number of the Agilent 1100 Series autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).

Table 34 Detailed connector layout (1100)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>BCD digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>BCD 0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 64 Block Diagram BCD Board
There are general purpose cables available to connect the BCD output, see “BCD Cables” on page 220 and the external outputs, see “External Contact Cable” on page 224 to external devices.
LAN Communication Interface Board

NOTE One board is required per Agilent 1100 stack. It is recommended to add the LAN board to the detector with highest data rate.

The LAN board can only be used together with:

NOTE a main board version G13XX-66520 (for G1315A, G1365A, G1314A, G1310A, G1311A, G1312A and G1313A) or newer and on all other 1100 modules. A DOS-ChemStation software revision A.06.01 or above.

The following cards can be used with the Agilent 1100 modules.

Table 35 LAN Boards

<table>
<thead>
<tr>
<th>Type</th>
<th>Vendor</th>
<th>Supported networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1369A</td>
<td>Agilent Technologies</td>
<td>Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) recommended for re-ordering</td>
</tr>
<tr>
<td>G1369-60001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommended Cables

- Cross-over network cable (shielded, 3 m long), 5023-0203 (for point to point connection)
- Twisted pair network cable (shielded, 7 m long), 5023-0202 (for hub connections)

Interfaces

The Agilent 1100 Series modules provide the following interfaces:

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Pumps</th>
<th>Autosampler</th>
<th>DA Detector</th>
<th>MW Detector</th>
<th>FL Detector</th>
<th>VW Detector</th>
<th>RI Detector</th>
<th>Thermostatted Column Compartment</th>
<th>Vacuum Degasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GPIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RS-232C</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Remote</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module’s main board.

GPIB Interface

The GPIB connector is used to connect the module with a computer. The address and control switches next to the GPIB connector determine the GPIB address of your module. The switches are preset to a default address and recognized by the operating software from Agilent Technologies.

Table 37 Default Addresses

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosampler</td>
<td>28</td>
<td>Autosampler</td>
</tr>
<tr>
<td>Pump</td>
<td>22</td>
<td>RID</td>
</tr>
<tr>
<td>FLD</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
CAN Interface

The CAN is an intermodule communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

Remote Interface

The APG remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as common shut down, prepare, and so on. Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired-or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to SHUT DOWN the system’s critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the POWER ON state of all connected modules. Control of analysis is maintained by signal readiness READY for next analysis, followed by START of run and optional STOP of run triggered on the respective lines. In addition, PREPARE and START REQUEST may be issued. The signal level is defined as:

- standard TTL levels (0 V is logic true, + 5 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5 V, and
- outputs are open collector type, inputs/outputs (wired-or technique).

Table 38 Remote Signal Distribution

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWD 24</td>
<td>Autosampler (HP 1050) 18</td>
</tr>
<tr>
<td>Agilent 8453</td>
<td>Pump (HP 1050) 16</td>
</tr>
<tr>
<td>DAD/MWD 26</td>
<td>VWD (HP 1050) 10</td>
</tr>
<tr>
<td>Column Compartment 27</td>
<td>DAD (HP 1050) 17</td>
</tr>
</tbody>
</table>
Introduction to the Detector

1. DGND Digital ground

2. PREPARE (L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.

3. START (L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.

4. SHUT DOWN (L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.

5. Not used

6. POWER ON (H) All modules connected to system are switched on. Receiver is any module relying on operation of others.

7. READY (H) System is ready for next analysis. Receiver is any sequence controller.

Table 38 Remote Signal Distribution, continued

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>STOP</td>
<td>(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.</td>
</tr>
<tr>
<td>9</td>
<td>START REQUEST</td>
<td>(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.</td>
</tr>
</tbody>
</table>

RS-232C

The RS-232C connector is used to control the instrument from a computer through RS-232C connection, using the appropriate software. This connector can be activated by the configuration switch module next to the GPIB connector.

The RS-232C is designed as DCE (Data Communication Equipment) with a 9-pin male SUB-D type connector. The pins are defined as follows:

Table 39 RS-232C Connection Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>Direction</th>
<th>Function</th>
</tr>
</thead>
</table>

The RS-232C connector is used to control the instrument from a computer through RS-232C connection, using the appropriate software. This connector can be activated by the configuration switch module next to the GPIB connector.

The RS-232C is designed as DCE (Data Communication Equipment) with a 9-pin male SUB-D type connector. The pins are defined as follows:

Table 39 RS-232C Connection Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>Direction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>DCD</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td>In</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>Out</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>Out</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>In</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>In</td>
<td>RI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 65 RS-232 Cable
Setting the 8-bit Configuration Switch

The 8-bit configuration switch is located next to the GPIB connector. Switch settings provide configuration parameters for GPIB address, serial communication protocol and instrument specific initialization procedures.

Factory setting is shown for the diode array detector or multiple wavelength detector.

![8-bit Configuration Switch](image)

Figure 66 8-bit Configuration Switch

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIB</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GPIB Address</td>
</tr>
<tr>
<td>RS-232C</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baud rate</td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td>RSVD</td>
<td>SYS</td>
<td></td>
<td>RSVD</td>
<td>RSVD</td>
<td>FC</td>
</tr>
</tbody>
</table>

Switches 1 and 2 define which set of parameters (for example, for GPIB, RS-232C, and so on) will be changed. Once the change has been completed, the instrument must be powered up again in order to store the values in the non-volatile memory.

In the non-volatile memory, the parameters are kept, regardless of whether you turn the instrument off and on again. They will be kept until the same set of parameters is
changed and the power is reset. All other previously stored configuration settings will still remain in the non-volatile memory.

In this way, you can store more than one set of parameters using the same 8-bit configuration switch twice, for example, for both GPIB and RS-232C.

GPIB Default Addresses

If you just want to change the GPIB address and need a detailed procedure, refer to the *Installing Your Agilent ChemStation System* handbook.

Default GPIB address is set to the following addresses: **Table 41**

Default Addresses for Agilent Series 1100 Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Address</th>
<th>Binary Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>22</td>
<td>0 0 0 1 0 1 1 0</td>
</tr>
<tr>
<td>FLD</td>
<td>23</td>
<td>0 0 0 1 0 1 1 1</td>
</tr>
<tr>
<td>VWD</td>
<td>24</td>
<td>0 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>Agilent 8453</td>
<td>25</td>
<td>0 0 0 1 1 1 0 1</td>
</tr>
<tr>
<td>DAD/MWD</td>
<td>26</td>
<td>0 0 0 1 1 0 1 0</td>
</tr>
<tr>
<td>Column compartment</td>
<td>27</td>
<td>0 0 0 1 1 0 1 1</td>
</tr>
<tr>
<td>Autosampler</td>
<td>28</td>
<td>0 0 0 1 1 1 0 0</td>
</tr>
<tr>
<td>RID</td>
<td>29</td>
<td>0 0 0 1 1 1 0 1</td>
</tr>
</tbody>
</table>

where 0 means that the switch is down and 1 means that the switch is up.

Communication Settings for RS-232C Communication

The communication protocol used in this instrument supports only hardware handshake (CTS/RTS).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the instrument must be powered up again in order to store the values in the non-volatile memory.
Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

Table 43 Baud Rate Settings

<table>
<thead>
<tr>
<th>Switches</th>
<th>Baud Rate</th>
<th>Switches</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4 5</td>
<td></td>
<td>3 4 5</td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>9600</td>
<td>1 0 0</td>
<td>9600</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1200</td>
<td>1 0 1</td>
<td>14400</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2400</td>
<td>1 1 0</td>
<td>19200</td>
</tr>
<tr>
<td>0 1 1</td>
<td>4800</td>
<td>1 1 1</td>
<td>38400</td>
</tr>
</tbody>
</table>

Table 44 Data Bit Settings

<table>
<thead>
<tr>
<th>Switch 6</th>
<th>Data Word Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7 Bit Communication</td>
</tr>
<tr>
<td>1</td>
<td>8 Bit Communication</td>
</tr>
</tbody>
</table>

Table 45 Parity Settings

<table>
<thead>
<tr>
<th>Switches</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 8</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>No Parity</td>
</tr>
<tr>
<td>1 0</td>
<td>Odd Parity</td>
</tr>
<tr>
<td>1 1</td>
<td>Even Parity</td>
</tr>
</tbody>
</table>

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.
Forced Cold Start Settings

Switches 1 and 2 do not force storage of this set of parameters in non-volatile memory. Returning switches 1 and 2 to other positions (other than being both up) will allow for normal operation.

CAUTION Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are diagnose and repair log books which will not be erased.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

Table 46 Forced Cold Start Settings

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

To return to normal operation, set switches back to your GPIB or RS 232 configuration settings.

Stay-Resident Settings

Firmware update procedures may require this mode in case of firmware loading errors.

Switches 1 and 2 do not force storage of this set of parameters in non-volatile memory. Returning switches 1 and 2 to other positions (other than being both up) will allow for normal operation.

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident part, that is, it is not operable as a detector. It only uses basic functions of the operating system for example, for communication.

Table 47 Stay Resident Settings

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

To return to normal operation, set switches back to your GPIB or RS-232C configuration settings.
The main power supply comprises a closed assembly (no onsite repair possibility).

The power supply provides all DC voltages used in the module except for the voltages supplied by the lamp power supply to the deuterium and tungsten lamps in the detectors. The line voltage can vary in a range from 100 – 120 or 220 – 240 volts AC ± 10 % and needs no manual setting.

WARNING
To disconnect the instrument from line, unplug the power cord. The power supply still uses some power, even if the power switch on the front panel is turned off.

No accessible hardware fuse is needed because the main power supply is safe against any short circuits or overload conditions on the output lines. When overload conditions occur, the power supply turns off all output voltages. Turning the line power off and on
again resets the power supply to normal operation if the cause of the overload condition has been removed.

An over-temperature sensor in the main power supply is used to turn off output voltages if the temperature exceeds the acceptable limit (for example, if the cooling fan of the instrument fails). To reset the main power supply to normal operating conditions, turn the instrument off, wait until it is approximately at ambient temperature and turn the instrument on again.

The following table gives the specifications of the main power supply.

Table 48 Main Power Supply Specifications

<table>
<thead>
<tr>
<th>Maximum power</th>
<th>Continuous output</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 VA / 130 W</td>
<td></td>
</tr>
</tbody>
</table>

Line Input

- 100 – 120 or 220 – 240 volts AC ± 10 %, line frequency of 50/60 Hz
- Wide ranging

Output 1

- + 24 V / 4.5 A (maximum) total power consumption of + 24 V and + 36 V must not exceed 107 W.

Output 2

- + 36 V / 2.5 A (maximum)
Introduction to the Detector

<table>
<thead>
<tr>
<th>Output</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 3</td>
<td>+5 V</td>
<td>3 A</td>
</tr>
<tr>
<td>Output 4</td>
<td>+15 V</td>
<td>0.3 A</td>
</tr>
<tr>
<td>Output 5</td>
<td>-15 V</td>
<td>0.3 A</td>
</tr>
</tbody>
</table>
7

Control Module Screens for Agilent 1100 DAD and MWD

Major keys on the Agilent 1100 Control Module 270
Control Module - Unsupported Module 271
Screens available from the Analysis screen 272
Screens available from the System screen 282
Screens available from the Records screen 284
Diagnostics and Tests 290
Major keys on the Agilent 1100 Control Module

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>Return to previous screen and scroll through top layer views (Analysis, Settings)</td>
</tr>
<tr>
<td>m</td>
<td>Open context sensitive menus</td>
</tr>
<tr>
<td>i</td>
<td>Information/help</td>
</tr>
<tr>
<td>Enter</td>
<td>Store changed parameters or execute the choice from a pull-down menu</td>
</tr>
<tr>
<td>On/Off</td>
<td>Switch on lamp(s)</td>
</tr>
<tr>
<td>Start</td>
<td>Start a run</td>
</tr>
<tr>
<td>Plot</td>
<td>View the chromatogram</td>
</tr>
<tr>
<td>Views</td>
<td>Change between view of analysis - status - system screens</td>
</tr>
</tbody>
</table>

The screens shown on the next pages are based on the following firmware revisions:

For the operation of the G1315B DAD and G1365B MWD you require:

Minimum Control Module firmware revision B.01.04 (G1323B).
Minimum LC Module firmware revision 4.xx.

Some screens may differ slightly depending on the module type G1315A/B DAD or G1365A/B MWD.

NOTE

In case the control module’s display seems to be frozen (hang-up due to a communication problem on the CAN bus, unplug the control module from the LC module and reconnect.
Control Module - Unsupported Module

In case the control module shows the following screen and the yellow LED on the detector is not flashing, the used firmware in the Control Module is not able to control the G1315B DAD or G1365B MWD. These detectors require firmware revision B.01.04 or above (G1323B).
The Analysis screen

This is the wake-up screen, if the Agilent 1100 detector is the only configured Agilent 1100 module. It is used to enter the most common detector method parameters.

The **m**-key allows access to the context sensitive menu. **Setup view** leads you to add sections for additional Agilent 1100 modules. **Restart** re-boots the control module.

Lamp ON/OFF

Use the F8 key (**On/Off**) to turn on the lamp(s). If more than one module is available, select the DAD or MWD from the pop-up menu.
The lamp(s) can be selected individually.

Setup View

In the Setup view, e.g. another module can be added to the view.

Here, e.g. the column compartment parameters are shown on the display as well. The number of parameters on the display are restricted as additional modules are added. Maximum 4 modules are shown automatically. If more modules are in the system, you have to chose in Setup view.
With the **Settings** key you open a pull-down menu where you can select the DAD modules.

Within the **Settings** you can change the DAD or MWD parameters and with a different set of parameters available through the F1-5 keys. F7 key resets the DAD or MWD to default values. F8 opens a window to turn on the lamps.

Use the **m**-key for the context sensitive menu. The **Status** command pulls up a monitor screen displaying signals and spectra as programmed. **Reset** will load the DAD or MWD default parameters. **Balance** brings the baseline back to set offset.
Use F1-key (More) opens a pull-down menu.

Selecting More and Signals C-E on the pull down menu you can enter additional DAD or MWD signal parameters.
Settings - Timetable

With the F2 key (Timetable) you can list the timetable for the DAD or MWD. Press F7 key (Insert) to add entries or F6 key (Delete) to remove entries.

Press the F7 key (Insert) to add a timetable events. Use the F6 key (Done) to view the entered lines of the timetable.

Use the m-key for the context sensitive menu. It gives you additional tools for the timetable.
Settings - Analog

With the F3 key (Analog) you can change the settings for the analog outputs.

Settings - Spectrum Range

FOR G1315A/B DAD: With the F4 key (Spectrum) you can change the settings for the spectrum acquisition.

FOR G1365A/B MWD: You can change the settings for the spectrum acquisition (STOP FLOW). The spectrum is started via “Sample, Holmium and Dark Current Spectrum” on page 291.

Settings - Run times
With the F5 key (Runtimes) you can change the stop time and the post-run time.

Press F5 key (Views) and select Status.

Status

This is an example if an Agilent 1100 DAD or MWD is configured standalone.

Signal plot

Press F6 key (Plot) to enter the plot screen (available also from the Analysis and System screen). Here you can observe the online signal(s). To add additional online signals (maximum 3), press F6 key (Select). If more than one signal is configured (see next), use the 1-2-3 number key to switch between the signals.
Press F6 key (Select). Here you can add additional online signals (maximum are 3), press F6 key (Select). Additional signals could be also pressure or temperature signals from other modules. Use the Right/Left arrows to switch between Available and Selected Signals. Use the F8 key (Move) to enter available signals into the box for selected signals or vice versa.

Method screens

Use ESC to return to the Analysis screen. Use the F3 key (Method) to view the parameters in a method and F8 key (Save As) to save the method in the module(s). The PC-Card key is only active when a PCMCIA card is inserted in the control module.

Use F2 key (PC-Card) to save a method on a PCMCIA card. Use the Right/Left arrows to switch between PC-Card and Instrument window. Use the UP/Down arrows to select the method. Use the F7/F8 keys (Copy) to enter available signals into the box for selected signals or vice versa.
Screens available from the System screen

System screen

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. This screen shows the last activities in the system.

System - Control

Use the F1 key (Control) to select the FL-Detector. Here you receive information about the not-ready conditions if needed. F2 key (Reset) does a re-initialization of the DAD or MWD.
Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F2 key (Configure) to select the DAD or MWD. Here you define further special setpoints for the DAD or MWD operation.

Use the F1 key (Interfaces) to access the interface settings (if required).

Screens available from the Records screen

Records screen

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F4 key (Records) to select the DAD or MWD. Errors are reported either into the System Log (F2) or Error Log (F3).
System / Error Log

Use the F2 key (System Log) or F3 key (Error Log) to look for errors.

Info Log

Use the m-key to receive a pop-up menu, Select Info Log. A list of the last events are listed. For troubleshooting reasons they can be printed or saved to a file on the PCMCIA card.

EMF (Early Maintenance Feedback)

Use the F1 key (EMF) to set EMF parameters. Choose menu item 1 (Setup limits) to select lamp-on level for the UV and Vis lamp at which you want to receive a warning.
If a set limit has been exceeded, a message box will pop up. This will not stop a sequence or run (information only to plan maintenance activities). If you press Reset, the limits will be removed. Ignore will continue to keep the EMF flag set.

Firmware Update

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F3 key (Records) to select the DAD or MWD. Use the F5 key (FW Update) to enter the Update section. If you want to update the resident firmware (together with specific main firmware revisions), select the a file from the PCMCIA card (RES_n_nn.DLB) and press execute. If you want to update the main firmware, press F7 key (Transfer) to turn the module into the resident mode (LED on module should blink yellow).

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F3 key (Records) to select the Generic module. In this screen the resident firmware revision is shown.
Use the F5 key (FW Update) to enter the Update section. Select the file from the PCMCIA card (1315-nnn.DLB for DAD or 1365-nnn.DLB for MWD) and press execute. When the update has finished the update, press F7 key (Transfer) to return the module into the normal mode (LED on module should stay yellow).

If you have not saved your methods, please do it before continuing. Otherwise they will be overwritten during the update process.

Changing the serial number

In case the serial number of the module has to be added, use the m-key to open the menu Enter Serial#. Choose System from the pull-down menu. Use the F3 key (Records) to select the DAD or MWD. Use the F4 key (Maint log) to view and edit the maintenance logbook.
Maintenance activities

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F3 key (Records) to select the DAD or MWD. Use the F4 key (Maint log) to view and edit the maintenance logbook.

Use the F7 key (Add) to add new maintenance activities. If an activity is not listed, you can type the activity into the line “Add” using the control modules key pad.

Diagnostics and Tests

Tests screen

Use the Esc key to receive Views on the F5 key. Choose System from the pull-down menu. Use the F3 key (Tests) to select the DAD or MWD. Several tests are available.
Control Module Screens for Agilent 1100 DAD and MWD

to test the Agilent 1100 DAD or MWD. Additional test are listed in the function box. Refer to “Troubleshooting and Test Functions” on page 49 for more information on the tests.

Intensity Test

Use the F5 key (Intensity) to get the instrument profile (example with UV and Vis lamp on).

Wavelength Calibration

Use the F1 key (Calibrate) and then F8 key (Execute) to start the DAD or MWD wavelength calibration (with water in the flow cell). If a deviation is found, press Adjust.
Sample, Holmium and Dark Current Spectrum

Use the F2 key (Spectrum) to take a spectrum (sample, dark current or holmium). Use the Left/Right arrow to move the cursor within the spectrum to find the wavelength of interest.

Built-in Test Chromatogram (Simulation)

To start the built-in test chromatogram, use the F8 key (Execute) to enable the simulation. Then press the m-key to open the pop-up menu. Select Start to start a run (all modules in the Agilent 1100 system must be in ready state).
Use the F6 key (Plot) to view the signal. A simulated chromatogram (4 peaks) will repeat until the run is stopped. The signal is also available on the analog output. A change of the peak width will change the retention times.

Slit Test

Use the F3 key (Slit Test) to test the movement of the electromechanical slit assembly.
8 Specifications

Performance Specifications 296
Performance Specifications

Table 50 Performance Specifications Agilent 1100 Series DAD and MWD

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection type</td>
<td>1024- element photodiode array</td>
<td></td>
</tr>
<tr>
<td>Light source</td>
<td>Deuterium and tungsten lamps</td>
<td></td>
</tr>
<tr>
<td>Wavelength range</td>
<td>190 – 950 nm</td>
<td></td>
</tr>
<tr>
<td>Short term noise (ASTM)</td>
<td>± 1×10^{-5} AU at 254 and 750 nm</td>
<td>See “” on page 297</td>
</tr>
<tr>
<td>Single and Multi-Wavelength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drift</td>
<td>2×10^{-3} AU/hr at 254 nm</td>
<td>See “” on page 297</td>
</tr>
<tr>
<td>Linear absorbance range</td>
<td>> 2 AU (upper limit)</td>
<td>See “” on page 297</td>
</tr>
<tr>
<td>Wavelength accuracy</td>
<td>± 1 nm</td>
<td>Self-calibration with deuterium lines, verification with holmium oxide filter</td>
</tr>
<tr>
<td>Wavelength bunching</td>
<td>1 – 400 nm</td>
<td>Programmable in steps of 1 nm</td>
</tr>
<tr>
<td>Slit width</td>
<td>1, 2, 4, 8, 16 nm</td>
<td>Programmable slit</td>
</tr>
<tr>
<td>Diode width</td>
<td>< 1 nm</td>
<td></td>
</tr>
</tbody>
</table>
Flow cells

- **Standard**: 13 µl volume, 10 mm cell path length and 120 bar (1760 psi) pressure maximum
- **Semi-Micro**: 5 µl volume, 6 mm cell path length and 120 bar (1760 psi) pressure maximum
- **High pressure**: 1.7 µl volume, 6 mm cell path length and 400 bar (5880 psi) pressure maximum
- **500 nano**: 0.5 µl volume, 10 mm cell path length and 50 bar (725 psi) pressure maximum

See “Optimization Overview” on page 31

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control and data evaluation</td>
<td>Agilent ChemStation for LC</td>
<td></td>
</tr>
<tr>
<td>Analog outputs</td>
<td>Recorder/integrator: 100 mV or 1 V, output range 0.001 – 2 AU, two outputs</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Controller-area network (CAN), GPIB, RS-232C, APG Remote: ready, start, stop and shut-down signals, LAN optional</td>
<td></td>
</tr>
<tr>
<td>Safety and maintenance</td>
<td>Extensive diagnostics, error detection and display (through control module and ChemStation), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.</td>
<td></td>
</tr>
</tbody>
</table>
GLP features
Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy with built-in holmium oxide filter.

Housing
All materials recyclable.

NOTE
ASTM: “Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography”.

Reference conditions: cell path length 10 mm, response time 2 s, flow 1 ml/min LC-grade Methanol, slit width 4 nm.

Linearity measured with caffeine at 265 nm.

For environmental conditions refer to “Environment” on page 15.
Safety Information

General Safety Information 300
Lithium Batteries Information 303
Disposal of Mercury from Deuterium Lamp 304
Radio Interference 305
Sound Emission 306
UV-Radiation 307
Solvent Information 308
Declaration of Conformity for HOX2 Filter 310
Agilent Technologies on Internet 311
General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

General

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

This instrument is designed and certified as a general purpose laboratory instrument for research and routine application only. It is not certified for in-vitro or medical applications.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

CAUTION

The operator of this instrument is advised that if the equipment is used in a manner not specified in this manual, the protection provided by the equipment may be impaired.
Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible. When inevitable, this should be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents please observe appropriate safety procedures (e.g. goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

Safety Symbols

Table 51 shows safety symbols used on the instrument and in the manuals.
A warning alerts you to situations that could cause physical injury or damage to the equipment. Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

A caution alerts you to situations that could cause a possible loss of data. Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

Table 51 Safety Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect the apparatus against damage.</td>
</tr>
<tr>
<td>⚡</td>
<td>Indicates dangerous voltages.</td>
</tr>
<tr>
<td>🌩</td>
<td>Indicates a protected ground terminal.</td>
</tr>
<tr>
<td>🕵️‍♀️</td>
<td>Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.</td>
</tr>
</tbody>
</table>

WARNING

A warning alerts you to situations that could cause physical injury or damage to the equipment. Do not proceed beyond a warning until you have fully understood and met the indicated conditions.
Lithium Batteries Information

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Lithium batteries may not be disposed-off into the domestic waste.

Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed. Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.

WARNING

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Lever det brugte batteri tilbage til leverandøren.

WARNING

NOTE

Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.
Disposal of Mercury from Deuterium Lamp

The long-life deuterium lamp (part number 5181-1528) includes a timer, which contains mercury. The timer has to be disposed of locally according to national waste disposal regulations.
Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Sound Emission

Manufacturer’s Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure $L_p < 70$ dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)
UV-Radiation

Emissions of ultraviolet radiation (200-315 nm) from this product is limited such that radiant exposure incident upon the unprotected skin or eye of operator or service personnel is limited to the following TLVs (Threshold Limit Values) according to the American Conference of Governmental Industrial Hygienists:

Table 52 UV-Radiation Limits

<table>
<thead>
<tr>
<th>Exposure/day</th>
<th>Effective Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 hours</td>
<td>0.1 µW/cm²</td>
</tr>
<tr>
<td>10 minutes</td>
<td>5.0 µW/cm²</td>
</tr>
</tbody>
</table>

Typically the radiation values are much smaller than these limits:

Table 53 UV-Radiation Typical Values

<table>
<thead>
<tr>
<th>Position</th>
<th>Effective Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp installed, 50 cm distance</td>
<td>Average 0.016 µW/cm²</td>
</tr>
<tr>
<td>Lamp installed, 50 cm distance</td>
<td>Maximum 0.14 µW/cm²</td>
</tr>
</tbody>
</table>

Solvent Information

Observe the following recommendations on the use of solvents.

Flow Cell
A Safety Information

Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.

Prevent any crystallization of buffer solutions. This will lead into a blockage/damage of the flow cell.

If the flow cell is transported while temperatures are below 5 degree C, it must be assured that the cell is filled with alcohol.

Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add small % of organic solvents (e.g. Acetonitrile or Methanol ~5%).

Solvents

Brown glass ware can avoid growth of algae.

Always filter solvents, small particles can permanently block the capillaries. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like nitric acid, sulfuric acid especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

 \[2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl} \]

 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.
- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1-% solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.
Declaration of Conformity for HOX2 Filter

We herewith inform you that the holmium oxide glass filter (type Hoya HY-1) (Part No. 79880-22711) meets the following specification of absorbance maxima positions:

361.0 nm - 418.9 nm - 453.7 nm - 536.7 nm (spectral bandwidth: 2 nm).

Agilent Technologies guarantees the traceability of the specified absorbance maxima to a National Institute of Standards & Technology (NIST) holmium oxide solution standard with a lot-to-lot tolerance of ±0.3nm.

The wavelength calibration filter built into the Agilent Technologies UV-visible detectors Table 54

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Wavelength Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>79880A</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>79883A</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>79854A</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>1306A</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>G1315A/B</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>G1365A/B</td>
<td>± 1 nm</td>
</tr>
<tr>
<td>G1600A</td>
<td>± 1 nm</td>
</tr>
</tbody>
</table>

is made of this material and meets these specifications. It is, therefore, suitable for wavelength calibration of these detectors within the specified wavelength accuracy of the respective detector over its wavelength range.
A Safety Information

___March 20, 2000__ Date

Engineering Manager Quality Manager

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at: http://www.agilent.com

Select “Products” - “Chemical Analysis”

It will provide also the latest firmware of the Agilent 1100 series modules for download.
Index

A
accessory kit, 18, 208
accuracy of wavelength, 296
achromat (source lens), 229
Agilent on internet, 311
algea information, 308
alpha and beta line, 84
analog signal output, 257
APG remote interface, 257
array, 230
ASTM environmental conditions, 15
ASTM - reference, 297

B
battery description, 239
location on DAM board, 144
safety information, 303
BCD/LAN board, 253
Beer-Lambert (law), 33
bench space, 15
beta and alpha line, 84
boards
interface board (BCD/LAN), 253
location of connectors, 144
main board MWM), 238
SCI board, 241
bunching of wavelength, 296

C
cable
connecting APG remote, 21
connecting CAN, 21
connecting GPIB, 21
connecting the ChemStation, 21
connecting the power, 21
overview and identification, 210

D
DAM board A/D converter, 241
analog outputs, 241
battery, 239
diagnostic A/D converter, 245
diagram of lamp supply, 244
diagram of main controller, 240
diagram of PFP functions, 242
fan drive, 239
firmware description, 246
interfaces, 245
lamp control, 243
leak sensor, 239
memory (SIMM) modules, 239
PDA electronics, 241
PDA frontend processor, 241
processors, 238
safety switches, 245

SCI board, 241
dark current spectrum, 291
dark current test, 91
delivery checklist, 17
diagnostics and tests with control module, 290
dimensions and weight, 16
diode array, 230, 231
diode width, 296
disposal of mercury, 304

E
can interface, 257
cell support windows, 229
choosing a flow cell, 32
diagnostic A/D converter, 245
description of, 261
description and factory settings, 261
diagnostic A/D converter, 245
diagram of lamp supply, 244
diagram of main controller, 240
diagram of PFP functions, 242
fan drive, 239
firmware description, 246
interfaces, 245
lamp control, 243
leak sensor, 239
memory (SIMM) modules, 239
PDA electronics, 241
PDA frontend processor, 241
processors, 238
safety switches, 245

Index

visible lamp current, 67
visible lamp voltage, 68
wavelength calibration failed, 70
ESD (electrostatic discharge) strap, 98
exchanging. see repairs
F

fan parts, 196 features
safety and maintenance, 297
filter test, 93
firmware
description, 246 flow diagram, 249 main system, 246 peak detector, 251 raw data conversion, 248 rawdata file, 251 resident system, 246 spectra acquisition modes, 252 spectra buffer, 250 update with control module, 286 updates, 180, 247
flow cell, 229
correction factors, 34 path length, 34 test, 90
what kind of cell, 32
front view of module, 22
fuses
BCD board, 183, 253
power supply, 267

G

GLP features, 297
GPIB default addresses, 257, 262 interface, 257
grating, 230

H

heater for fan, 196
holmium oxide declaration of conformity, 310
filter, 229
spectrum, 291
test, 86
humidity, 16

Identifying, 181
information on uv-radiation, 307 installation accessory kit, 18 bench space, 15
delivery checklist, 17
environment, 15 flow connections, 25 of flow cell and capillaries, 25 of the detector, 22
physical specifications, 16
power considerations, 14 power cords, 14 site requirements, 14
unpacking, 17
instrument layout, 234 intensity test, 88 interface board (BCD/LAN), 253 interfaces
analog signal output, 257 APG remote, 257
CAN, 257 GPIB, 257
overview, 256 RS-232C, 259 internet,
311 introduction
optical system diagram, 229
optical system overview, 229
optical unit parts, 229

L

lamps, 229 LAN cables, 226
LAN interface board, 255
leaks
correcting, 130
line voltage and frequency, 16
location of connectors, 233

M

maintenance (simple repairs), 99 margins, 42
memory
description, 239
Mercury, disposal, 304
message
communication error, 69
compensation sensor open, 62
compensation sensor short, 63
cover violation, 66
diode current leakage, 71
fan failed, 64
holmium oxide test failed, 72
ignition without cover, 65
leak, 58
leak sensor open, 60
leak sensor short, 61
remote timeout, 56
shutdown, 55
synchronization lost, 57
time-out, 54
uv heater current, 76
uv ignition failed, 75
uv lamp current, 73
uv lamp voltage, 74
visible lamp current, 67
visible lamp voltage, 68
wavelength calibration failed, 70
MWM board
description, 238

N

Nano Flow Cells, 192
nano-flow cells, 192
negative absorbance, 43

O

operation temperature, 16
optical system
diagram, 229
overview, 229
optimization
choosing a flow cell, 32
detector performance, 30
for sensitivity, selectivity, linearity, dispersion, 33
how to get the best performance, 30
margins for negative absorbance, 43
of selectivity, 44
overview, 31
peak width, 35
sample and reference wavelength, 36
slit width, 39
spectra acquisition, 42
theshold, 43

P

parts identification, 181
accessory kit, 208
achromat (source lens), 199
cable overview, 210
cables - analog, 212
cables - APG remote, 215
cables - auxiliary, 222
cables - BCD, 220
cables - CAN, 223
cables - external contact, 224
cables - LAN cables, 226
cell support, 200
control module, 201
coupling lens, 198
foams and dampers, 205
high pressure (micro) flow cell, 190
holmium oxide filter, 197
leak panels, 207
main assemblies, 183
nl flow cells, 192
optical unit, 184
overview, 182
plastics, 204
power and status, 205
semi-micro flow cell, 188
sheet metal, 202
standard flow cell, 186
union holder/ZDV, 202
peak detector, 251
peak width (response time), 35
performance optimization, 30
photometric accuracy, 34
physical specifications, 16
humidity, 16
line voltage and frequency, 16
operation temperature, 16
power consumption, 16
safety standards, 16
weight and dimensions, 16
power considerations, 14
power supply
description, 266
specifications, 267
programmable slit width, 296
range, 42
rawdata file, 251
rear view of module, 24
recalibration of wavelength, 50, 84, 291
Repairing, 95
repairs
assembling main cover, 178
cleaning the instrument, 97
correction leaks, 130
definition of, 96
exchanging a flow cell, 105
exchanging a lamp, 102
exchanging holmium oxide filter, 127
exchanging internal parts, 138
exchanging leak sensor, 167
exchanging main board (DAM), 143
exchanging power supply, 164
exchanging the achromat, 158
exchanging the fan ("A"), 148
installing optical unit, 171, 173
introduction, 96
of the detector, 3, 95
removing the optical unit, 154, 156
removing top cover and foam, 140
replacing cell support window, 135
replacing coupling lens, 132
replacing filter motor, 162
replacing firmware, 180
replacing foam and top cover, 175
replacing leak handling system, 131
replacing semi-micro flow cell capillaries, 119
replacing status light pipe, 170
replacing STD flow cell capillaries, 114
Index

simple repairs overview, 99
the high pressure flow cell, 112
the standard/semi-micro flow cell,
108
using the ESD strap, 98
warnings and cautions, 96
replacing interface board (ECB), 179
Replacing the Fan Parts ("B"), 150
response time (peak width), 35
RS-232C cable kit to PC, 225
communications settings, 263
top interface, 259
settings, 263
S
safety information on
lithium batteries, 303
standards, 16
sample and reference wavelength, 36
sample, holmium and dark current spectrum, 291
selectivity
optimization, 44
sensor for fan, 196
serial number
top entered on ChemStation, 147
entered on control module, 146, 288
serial number change with control module, 288
site requirements, 14
slit width, 39
specifications
analog outputs, 297
communications, 297
diode width, 296
flow cell, 296
GLP features, 297
linear range, 296
noise and drift (ASTM), 296
programmable slit width, 296
safety and maintenance, 297
wavelength
accuracy/bunching, 296
wavelength range, 296
spectra
acquisition, 42
acquisition modes, 252
acquisition range, 42
acquisition step and threshold, 42
run buffer, 250
Index
spectrograph, 229, 230 diodes per nm, 230
stack configuration, 20, 21
 front view, 20
 rear view, 21
steps, 42

T

temperature control, 245 test chromatogram on control module, 292 test functions, 50 tests
dark current, 85, 91 filter, 85, 93 flow cell, 85, 90 holmium oxide, 85, 86 intensity, 85, 88 overview, 85
tests on control module, 290
threshold, 43
troubleshooting
 error messages, 50, 53 status indicators, 50, 51

U

unpacking, 17
unsupported Module, 271
using EMF, 235
uv-radiation, 307

V

variable entrance slit, 230

W

wavelength accuracy and bunching, 296
In This Book

This manual contains technical reference information about the Agilent 1100 Series diode array detectors.

The manual describes the following:

• installing the detector,
• introduction to the diode array detector and its optimization,
• diagnostics and troubleshooting,
• repairing the detector,
• parts and materials,
• theory of operation, and
• screens of the local control module.

Agilent Technologies 1995, 1996-2004

Printed in Germany
Edition 05/2004

G1315-90005

G1315-90005